首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The National Institute of Standards and Technology (NIST) has developed several Standard Reference Materials (SRMs) based on human serum. NIST SRM 909b, Human Serum, is a lyophilized human serum material with concentrations for seven organic and six inorganic analytes at two levels certified solely by definitive methods (DMs). This material provides the vehicle by which high precision, high accuracy measurements made with DMs at NIST can be transferred through the measurement hierarchy to other laboratories. Isotope dilution gas chromatographic-mass spectrometric (GC-IDMS) methods were applied to measure cholesterol, creatinine, glucose, urea, uric acid, triglycerides, and total glycerides. Thermal ionization isotope dilution mass spectrometry (TI-IDMS) was used for determination of lithium, magnesium, potassium, calcium, and chloride. In addition, chloride was determined by coulometry, providing a comparison between two DMs. Sodium, which lacks a stable isotope that would permit isotope dilution mass spectrometric (IDMS) measurement, was determined by gravimetry. SRM 909b includes certified values for total glycerides and triglycerides, which were not certified in the previous lot of this material (SRM 909a). Improvement in uniformity of vial fill weight in the production of SRM 909b resulted in smaller certified uncertainties over previous freeze-dried serum SRMs. Uncertainties at the 99% level of confidence for relative expanded uncertainty (%) for certification of the organic analytes on a mmol/L/g basis ranged from 0.44% for urea (level II) to 5.04% for glucose (level II). (In-house studies have shown glucose to be a relatively unstable analyte in similar lyophilized serum materials, degrading at about 1% per year.) Relative expanded uncertainties (99% C.I.) for certification of inorganic analytes on a mmol/L/g basis ranged from 0.25% for chloride (level I) to 0.49% for magnesium (level II). Received: 30 July 1997 / Revised: 24 October 1997 / Accepted: 31 October 1997  相似文献   

2.
Modern highly multiplexed short tandem repeat (STR) assays used by the forensic human-identity community require tight control of the initial amount of sample DNA amplified in the polymerase chain reaction (PCR) process. This, in turn, requires the ability to reproducibly measure the concentration of human DNA, [DNA], in a sample extract. Quantitative PCR (qPCR) techniques can determine the number of intact stretches of DNA of specified nucleotide sequence in an extremely small sample; however, these assays must be calibrated with DNA extracts of well-characterized and stable composition. By 2004, studies coordinated by or reported to the National Institute of Standards and Technology (NIST) indicated that a well-characterized, stable human DNA quantitation certified reference material (CRM) could help the forensic community reduce within- and among-laboratory quantitation variability. To ensure that the stability of such a quantitation standard can be monitored and that, if and when required, equivalent replacement materials can be prepared, a measurement of some stable quantity directly related to [DNA] is required. Using a long-established conventional relationship linking optical density (properly designated as decadic attenuance) at 260 nm with [DNA] in aqueous solution, NIST Standard Reference Material (SRM) 2372 Human DNA Quantitation Standard was issued in October 2007. This SRM consists of three quite different DNA extracts: a single-source male, a multiple-source female, and a mixture of male and female sources. All three SRM components have very similar optical densities, and thus very similar conventional [DNA]. The materials perform very similarly in several widely used gender-neutral assays, demonstrating that the combination of appropriate preparation methods and metrologically sound spectrophotometric measurements enables the preparation and certification of quantitation [DNA] standards that are both maintainable and of practical utility. Figure NIST Standard Reference Material (SRM) 2372 Human Quantitation Standard  相似文献   

3.
利用苯酚碱性水溶液的紫外光吸收特性,按文献记载的摩尔吸收系数和实际测量结果,计算10.00mg/1水中酚的吸收值的标准参考数据,用紫外分光光度法对水中酚标准物质的稳定性和定值数据进行了测量,大大简化了操作手续,并获得了准确的分析结果。  相似文献   

4.
The National Institute of Standards and Technology (NIST) seaweed Standard Reference Material (SRM4359) was developed through an intercomparison of 24 experienced laboratories. Several statistical techniques were evaluated for establishing reference values using the laboratories’ reported values including mean, midmean, median, Type B On Bias (BOB), Graybill-Deal, Mandel-Paule, Vangel-Rukhin, Cox and Maximum Likelihood. After reviewing the results from all these techniques, the median was chosen as a suitably robust way to calculate reference values. The uncertainties for the median values were estimated using bootstrap analysis.  相似文献   

5.
6.
The efficiency of extraction of polycyclic aromatic hydrocarbons (PAHs) with molecular masses of 252, 276, 278, 300, and 302 Da from standard reference material diesel particulate matter (SRM 2975) has been investigated using accelerated solvent extraction (ASE) with dichloromethane, toluene, methanol, and mixtures of toluene and methanol. Extraction of SRM 2975 using toluene/methanol (9:1, v/v) at maximum instrumental settings (200 °C, 20.7 MPa, and five extraction cycles) with 30-min extraction times resulted in the following elevations of the measured concentration when compared with the certified and reference concentrations reported by the National Institute of Standards and Technology (NIST): benzo[b]fluoranthene, 46%; benzo[k]fluoranthene, 137%; benzo[e]pyrene, 103%; benzo[a]pyrene, 1,570%; perylene, 37%; indeno[1,2,3-cd]pyrene, 41%; benzo[ghi]perylene, 163%; and coronene, 361%. The concentrations of the following PAHs were comparable to the reference values assigned by NIST: indeno[1,2,3-cd]fluoranthene, dibenz[a,h]anthracene, and picene. The measured concentration of dibenzo[a,e]-pyrene was lower than the information value reported by the NIST. The measured concentrations of other highly carcinogenic PAHs (dibenzo[a,l]pyrene, dibenzo[a,i]pyrene, and dibenzo[a,h]pyrene) in SRM 2975 are also reported. Comparison of measurements using the optimized ASE method and using similar conditions to those applied by the NIST for the assignment of PAH concentrations in SRM 2975 indicated that the higher values obtained in the present study were associated with more complete extraction of PAHs from the diesel particulate material. Re-extraction of the particulate samples demonstrated that the deuterated internal standards were more readily recovered than the native PAHs, which may explain the lower values reported by the NIST. The analytical results obtained in the study demonstrated that the efficient extraction of PAHs from SRM 2975 is a critical requirement for the accurate determination of PAHs with high molecular masses in this standard reference material and that the optimization of extraction conditions is essential to avoid underestimation of the PAH concentrations. The requirement is especially relevant to the human carcinogen benzo[a]pyrene, which is commonly used as an indicator of the carcinogenic risk presented by PAH mixtures.  相似文献   

7.
There is currently no official method for the analysis of fatty acids (including trans fatty acids) in infant formulas. AOAC Official Method 996.01 for Fat Analysis in Cereal Products was extended to the analysis of milk-based infant formula Standard Reference Material (SRM)1846 to determine its applicability for use with infant formulas. Following the analysis of SRM 1846, 2 infant formulas, one milk-based liquid and one soy-based powdered infant formula, were analyzed for total fatty acid composition. Fatty acid methyl esters were prepared and analyzed by gas chromatography. The results of the analysis of SRM 1846 show that the mean analyzed values were highly reproducible as indicated by low coefficients of variation (CV). The CVs were <5% for the major fatty acids. Mean analyzed values for individual fatty acids in SRM 1846 were within +/- 1 standard deviation of the certificate values. The analyzed value for total fat as triglycerides (26.27 +/- 0.25%) agreed well with the certificate value (27.1 +/- 0.59%). Analyses of infant formulas showed that the concentrations of linoleic acid and fat meet the requirements for such formulas.  相似文献   

8.
A gas standard reference material (SRM) containing fifteen hydrocarbons in nitrogen at a nominal 5 nmol mol(-1) was issued in 1993. The certification period for SRM 1800 was assigned as 2 years, because of limited stability data. Over a period of 10 years reanalysis of the lot standard (a sample chosen from the SRM lot to which all other lot samples are compared), SRM samples remaining in stock for sale, and SRMs returned to the National Institute of Standards and Technology (NIST) for recertification, were compared with primary standards to assess the stability of the hydrocarbons. New primary standards were periodically introduced into the original primary standard suite to assess the stability and consistency of the primary standards. Over this ten-year period 11 SRM 1800 samples were reanalyzed, resulting in 210 amount-of-substance fraction (concentration) determinations performed for quality-assurance purposes. Of these measurements 209 (99.5%) agreed within the original 95% confidence interval of the +/-4% expanded uncertainty, demonstrating the stability of the standards. There was also agreement to within +/-2% of the original concentration for 204 (97%) of the measurements. This is well within the original +/-4% expanded uncertainty assigned to the hydrocarbon concentrations at the approximate 95% confidence interval demonstrating stability. These results will enable the expiry date to be increased for future restock issues of SRM 1800.  相似文献   

9.
Summary Corn Bran (NIST RM 8433), Corn Starch (NIST RM 8432) and Microcrystalline Cellulose (NIST RM 8416) Reference Materials were characterized for essential and toxic major, minor and trace elemental composition in an interlaboratory cooperative characterization campaign. Extensive application of widely varied analytical methods by analysts in cooperating laboratories yielded 10–29 best estimate and 1–16 informational concentration values for each of these materials. Two materials, Corn Starch and Microcrystalline Cellulose, contain particularly low levels of trace elements. These reference materials are intended for analytical quality control of elemental determinations in corn and plant products as well as other agricultural/food materials with related matrices.Contribution No. 92–146 from Centre for Land and Biological Resources Research  相似文献   

10.
Summary Bovine Muscle Powder (NIST RM 8414), Whole Egg Powder (NIST RM 8415) and Whole Milk Powder (NIST RM 8435) Reference Materials were characterized for essential and toxic major, minor and trace element composition in an interlaboratory cooperative characterization campaign. Extensive application of widely varied analytical methods yielded best estimate concentration values for 27, 23 and 21 elements, and informational concentration values for 5, 4 and 9 elements, respectively, in RM's 8414, 8415 and 8435. These Reference Materials are intended for analytical quality control of element determinations on meat, egg and milk-based products as well as agricultural/food materials with related matrices.Contribution no. 92–147 from Centre for Land and Biological Resources Research  相似文献   

11.
The S mass fractions of coal SRMs 2682b, 2684b, and 2685b are certified by direct comparison with coal SRMs 2682a, 2684a, and 2685a, respectively, using high-temperature combustion analysis with infrared (IR) absorption detection. The S mass fractions of the “a” materials used for calibration were previously determined by means of isotope-dilution thermal-ionization mass spectrometry (ID-TIMS). Therefore, the comparisons performed with the combustion–IR absorption method establish direct traceability links to accurate and precise ID-TIMS measurements. The expanded uncertainties associated with the certified S mass fractions are of approximately the same magnitude as would be expected for the ID-TIMS methodology. An important aspect of these certifications is that each “b” material is essentially identical with the corresponding “a” material, because both were produced from the same bulk, homogenized coal. As a test of the efficacy of the new certification approach when calibrant and unknown are not identical, the S mass fraction of coal SRM 2683b has been determined by direct comparison to coal SRM 2683a. These two coals, which have both previously been analyzed with ID-TIMS, are different in terms of S content and other properties. Whereas the S mass fraction for SRM 2683b determined with the new methodology agrees statistically with the ID-TIMS value, there is reason for caution in such cases. In addition to the usefulness of the alternative approach for certification activities within NIST, this approach might also be an excellent way of establishing NIST traceability during the value assignment process for reference materials not issued by NIST. Further research is needed, however, to understand better the scope of applicability.  相似文献   

12.
The S mass fractions of coal SRMs 2682b, 2684b, and 2685b are certified by direct comparison with coal SRMs 2682a, 2684a, and 2685a, respectively, using high-temperature combustion analysis with infrared (IR) absorption detection. The S mass fractions of the "a" materials used for calibration were previously determined by means of isotope-dilution thermal-ionization mass spectrometry (ID-TIMS). Therefore, the comparisons performed with the combustion-IR absorption method establish direct traceability links to accurate and precise ID-TIMS measurements. The expanded uncertainties associated with the certified S mass fractions are of approximately the same magnitude as would be expected for the ID-TIMS methodology. An important aspect of these certifications is that each "b" material is essentially identical with the corresponding "a" material, because both were produced from the same bulk, homogenized coal. As a test of the efficacy of the new certification approach when calibrant and unknown are not identical, the S mass fraction of coal SRM 2683b has been determined by direct comparison to coal SRM 2683a. These two coals, which have both previously been analyzed with ID-TIMS, are different in terms of S content and other properties. Whereas the S mass fraction for SRM 2683b determined with the new methodology agrees statistically with the ID-TIMS value, there is reason for caution in such cases. In addition to the usefulness of the alternative approach for certification activities within NIST, this approach might also be an excellent way of establishing NIST traceability during the value assignment process for reference materials not issued by NIST. Further research is needed, however, to understand better the scope of applicability.  相似文献   

13.
Total homocysteine (tHCY) and folate are interrelated biomarkers for arteriosclerosis and coronary heart disease. Although many different methods for both tHCY and folate are clinically available, the intermethod and interlaboratory results are often poor, resulting in the need for a matrix reference material and reference methods. The National Institute of Standards and Technology (NIST) has developed isotope dilution liquid chromatography/mass spectrometry (LC/MS) and liquid chromatography/ tandem mass spectrometry (LC/MS/MS) methods for determination of tHCY and several folate forms including 5-methyltetrahydrofolic acid (5MT) and folic acid (FA). Additionally, a method for simultaneous measurement of tHCY, 5MT, and FA has been developed and validated. In collaboration with the Centers for Disease Control and Prevention (CDC), mass spectrometric methods and methods used in clinical laboratories have been applied to characterize a new Standard Reference Material (SRM), SRM 1955, "Homocysteine and Folate in Human Serum," containing low, medium, and high levels of tHCY and 5MT. Additionally, FA, 5-formyltetrahydrofolic acid (5FT), vitamin B12, and total folate values are provided. Use of the new SRM should improve clinical measurements and will permit traceability to internationally recognized certified reference materials, as described by European Directive 98/79/EC on in vitro diagnostic medical devices.  相似文献   

14.
A microwave procedure for the digestion of the NIST 1634b reference material "residual fuel oil" in closed pressurized vessels was developed in an attempt to facilitate routine analysis and obtain reproducible conditions or comparable results. The influence of sample size, reagent composition and volume, microwave power, and duration of heating on the digestion procedure was studied. Pressure and temperature inside the reaction vessels were monitored to determine the progression of the reaction and to develop optimal conditions. A nine-step heating program requiring 36.5 min with microwave power not exceeding 450 W in the pulsed mode was found suitable for the digestion of approximately 250 mg fuel oil with a mixture of nitric acid (5.0 mL) and hydrogen peroxide (2.0 mL). The reproducibility of microwave power was determined in terms of the relative standard deviations (n = 3) for temperature (2.7%) and pressure (4.9%) data. The vapor pressures obtained with 5.0 mL Milli-Q water (heated) in an 80-mL digestion vessel showed good agreement with literature data. The excess acid in the resulting digests was removed by evaporation and the concentrations of 24 elements (Ag, Al, As, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mo, Ni, Pb, Sb, Sn, Sr, Ti, Tl, V, U, and Zn) were determined in the diluted digests by inductively coupled plasma mass spectrometry (ICP-MS). The experimental results were in good agreement with the certified and recommended concentrations for eight elements (Al, As, Co, Cr, Ni, Pb, V, Zn) in solutions obtained after one digestion step. An additional digestion step, consisting of intermediate cooling and venting stages, was required for the accurate determination of Fe. No agreement was reached for Ca and Ba even after two-step digestion. The proposed method of digestion provided precise results with relative standard deviations generally less than 5% for most of the elements determined.  相似文献   

15.
The National Institute of Standards and Technology (NIST) has had a major quality-assurance role in the federal effort to reduce lead poisoning of children in the United States through its mission of ensuring the accuracy of chemical measurements. NIST certifies reference materials (standard reference materials--SRMs) that are used to benchmark measurements by secondary and field methods of analysis--to ensure that decisions of great health and economic impact are soundly based on good measurement science. Over the past 10 years, in cooperation with the US Environmental Protection Agency (EPA), US Department of Housing and Urban Development (HUD), and the United States Geological Survey (USGS), NIST has prepared and certified SRMs for lead content in soil, indoor dust, and paint. The role of these materials in meeting regulatory and abatement needs is described and their certified values are summarized.  相似文献   

16.
The National Institute of Standards and Technology (NIST) has had a major quality-assurance role in the federal effort to reduce lead poisoning of children in the United States through its mission of ensuring the accuracy of chemical measurements. NIST certifies reference materials (standard reference materials – SRMs) that are used to benchmark measurements by secondary and field methods of analysis – to ensure that decisions of great health and economic impact are soundly based on good measurement science. Over the past 10 years, in cooperation with the US Environmental Protection Agency (EPA), US Department of Housing and Urban Development (HUD), and the United States Geological Survey (USGS), NIST has prepared and certified SRMs for lead content in soil, indoor dust, and paint. The role of these materials in meeting regulatory and abatement needs is described and their certified values are summarized.  相似文献   

17.
A new standard reference material (SRM) for drugs of abuse in human serum (SRM 1959) has been developed. This SRM is intended to be used as a control material for laboratories performing analysis of drugs of abuse in blood to evaluate the accuracy of their methods. SRM 1959 is a frozen human serum material fortified with seven compounds for which analyses are performed to determine evidence of illegal drug use: benzoylecgonine (BZE), methadone (METH), methamphetamine (MAMP), morphine (MOR), nordiazepam (NOR), phencyclidine (PCP), and 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid (THC-9-COOH). Two independent methods involving isotope dilution (ID)-gas chromatography/mass spectrometry (GC/MS) and ID-liquid chromatography/mass spectrometry (LC/MS) were used for the value assignment. For THC-9-COOH, an additional measurement using LC/tandem mass spectrometry (LC/MS/MS) was also included. All methods used isotopically labeled compounds as internal standards and solid-phase extractions to isolate the analytes from the serum. The GC/MS methods used different clean-up procedures from those used for the LC/MS-based methods. Repeatability with within-set coefficients of variation (CVs) ranged from 0.5% to 4.3% for the GC/MS methods and from 0.2% to 1.2% for the LC/MS-based methods. Intermediate precision with between-set CVs for all the methods ranged from 0.1% to 1.1%. Agreement between the GC/MS and LC/MS methods ranged from 0.8% to 8.8%. The results from the methods were combined to obtain the certified concentrations and their expanded uncertainties.  相似文献   

18.
In Standard Reference Material 968b, fat-soluble vitamins and cholesterol in human serum, certified values are provided for cholesterol, retinol, retinyl palmitate, -tocopherol, trans--carotene, total -carotene (trans plus cis isomers), total -carotene, and lutein. Non-certified values are also reported for -tocopherol (includes -tocopherol), -tocopherol, zeaxanthin, -cryptoxanthin, trans-lycopene, trans-lycopene, trans--carotene, total lycopene, 9-cis-carotene, 13- plus 15-cis--carotene, and 15-cis--carotene. Both certified and non-certified values are based on the agreement among results from three different liquid chromatographic analytical procedures developed at NIST and from an interlaboratory comparison exercise among institutions that participate in a NIST-managed Micronutrients Measurement Quality Assurance Program. Cholesterol is certified in this material using the NIST isotope dilution/mass spectrometric definitive method.  相似文献   

19.
The methylmercury content in two new marine bivalve mollusk tissue Standard Reference Materials (SRMs) has been certified using results of analyses from the National Institute of Standards and Technology (NIST) and two other laboratories. The certified concentrations of methylmercury were established based on the results from four and six different (independent) analytical methods, respectively, for SRM 1566b Oyster Tissue (13.2 +/- 0.7 microg/kg) and SRM 2977 Mussel Tissue (organic contaminants and trace elements) (36.2 +/- 1.7 microg/kg). The certified concentration of methylmercury in SRM 1566b is among the lowest in any certified reference material (CRM).  相似文献   

20.
The methylmercury content in two new marine bivalve mollusk tissue Standard Reference Materials (SRMs) has been certified using results of analyses from the National Institute of Standards and Technology (NIST) and two other laboratories. The certified concentrations of methylmercury were established based on the results from four and six different (independent) analytical methods, respectively, for SRM 1566b Oyster Tissue (13.2 ± 0.7 μg/kg) and SRM 2977 Mussel Tissue (organic contaminants and trace elements) (36.2 ± 1.7 μg/kg). The certified concentration of methylmercury in SRM 1566b is among the lowest in any certified reference material (CRM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号