首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Surface morphology of nanostructured polymer-based activated carbons   总被引:1,自引:0,他引:1  
Complementary techniques, including nitrogen adsorption, small-angle X-ray scattering (SAXS), and atomic force microscopy (AFM), have been utilized to characterize the surface features of highly microporous carbon materials prepared from highly aromatic polymers. Nitrogen adsorption measurement interpreted by BET, DR, HK, and NLDFT methods reveals these nanostructured activated carbons exhibit a high surface area of up to 4000 m2/g, a micropore volume up to approximately 1.75 mL/g, and an average pore size of approximately 10-20 angstroms. A modified equation, based on Porod's law, the Debye-Bueche equation, and fractal dimension theories, has been proposed and successfully applied to analyze the SAXS spectra and to extract the porous texture of these unique activated carbons. AFM 3D imaging combined with the Fourier transform technique has been applied to statistically quantify pore sizes on the carbon surface.  相似文献   

2.
The validity of the fractal versions of the FHH and BET theories for describing the adsorption of butane and nitrogen on a variety of partially dehydroxylated silica surfaces has been tested. The fractal dimensions obtained from adsorption data have been compared with those obtained completely independently using SAXS. It was found that the fractal dimensions obtained from butane adsorption isotherms, using both the fractal FHH and fractal BET theories, agreed well with the corresponding values obtained from SAXS over overlapping length scales. However, in general, a systematic deviation between the fractal dimension obtained from nitrogen adsorption and that obtained from SAXS was observed. The fractal dimensions obtained from nitrogen adsorption were consistently larger than those obtained from SAXS, which is the opposite of what has often been found in the literature. It has been suggested that the differences in the suitability of the adsorption theories tested to describe butane and nitrogen adsorption is due to the significant difference between the interaction strengths of these two different molecules with silica surfaces. A modified theory that can account for the discrepancy between the fractal dimensions obtained from nitrogen adsorption and SAXS has been proposed. The implications of the new theory for the accuracy of nitrogen adsorption BET surface areas for silicas are discussed.  相似文献   

3.
The mix-based activated carbon derived from corn stalk and walnut shell was prepared by chemical activation method using phosphoric acid as the activator. The optimized conditions for preparation were obtained by the orthogonal experiment, the characterizations of the activated carbon were performed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy(FTIR), Boehm's titration method and nitrogen adsorption. For the prepared mix-based activated carbon, the highest iodine number, methylene blue number and BET surface area are 720.5 mg/g, 195.0 mg/g and 1187 m2/g, respectively, and the pores are mainly mesopores. The mix-based activated carbon shows the higher adsorption capacity for malachite green than the raw materials, the activated carbons prepared only from corn stalk or walnut shell and the commercial activated carbon. The kinetics and thermodynamics of the adsorption can be satisfactorily described by the pseudo-second-order kinetic model and the Langmuir isotherm model, separately.  相似文献   

4.
A series of graphitized carbon blacks have been studied using argon and nitrogen adsorption at their boiling points. Analysis of adsorption isotherms was performed with nonlocal density functional theory (NLDFT) accounting for the Axilrod-Teller equation to describe the effect of nonadditivity of the gas-solid interaction. In our previous study [Ustinov, E. A. J. Chem. Phys. 2010, 132, 194703] we have shown that the nonadditivity effect decreases the attractive component of Ar-Ar interaction in the first molecular layer adjacent to the graphite surface by about 23%. This is a source of a large error (up to 40%) when a standard NLDFT is applied to fitting the low-temperature Ar adsorption isotherm on a graphitized carbon black. A new approach that incorporates the Axilrod-Teller equation into the standard NLDFT diminishes the relative error from 40 to 4%, which suggests that the nonadditivity correction should not be ignored in most adsorption systems including crystalline and amorphous solids. The present study is an extension of our approach to N(2) adsorption isotherms at 77.3 K on graphitized carbon blacks. We show that the approach allows to reliably determine the gas-solid molecular parameters, the gas-solid nonadditivity coefficient, the Henry coefficient, and the specific surface area. The surface areas of different carbon blacks determined with the N(2) at 77.35 K and Ar at 87.29 K are very close to each other, though in the former case the values proved to be slightly smaller presumably due to nonspherical shape of the nitrogen molecule. A comparison with the Brunauer, Emmett, and Teller method is provided.  相似文献   

5.
The effect of (0.05 M) tetraalkylammonium salt additions in aqueous 0.5 M KOH on the rate of impregnation of carbon black electrodes with a polytetrafluoroethylene binder (5–20 wt % PTFE) at hydrogen evolution potentials was studied. It was shown that tetraalkylammonium salts facilitate the fast filling of electrodes with electrolyte, and their effect increases with the molecular mass of the cation. Tetramethylammonium bromide showed the weakest effect. In solutions with tetrabutylammonium bromide, the electrodes were completely flooded with 5 wt % PTFE within 15 min. Diethyldibenzylammonium bromide had a similar effect. The influence of the PTFE concentration in the electrodes on their capacity was studied. The specific capacity of acetylene black in acid and alkaline aqueous solutions was evaluated from the electrode surface area determined by low-temperature nitrogen adsorption (BET).  相似文献   

6.
With regard to H-Y type zeolites dealuminated by hydrothermal and acid treatments, their physical properties were characterized by measurements of 29Si- and 27Al-MAS-NMR, IR, and X-ray diffraction. The secondary pores were quantitatively analyzed by the t-plot method for nitrogen adsorption isotherm at liquid nitrogen temperature and were then compared with the results of samples dealuminated by SiCl4 treatment.The plateau region of the nitrogen adsorption isotherm diminished as hydrothermal and acid treatments proceeded, with the result that the shape of the t-plot changed to that of three straight sections. This t-plot shape suggested that the secondary pores with relatively consistent sizes could develop with the progress of the treatment. On the other hand, SiCl4 treatment was found to produce less secondary pores than hydrothermal and acid treatments. The surface area of micropores calculated from the t-plots gave a considerably higher value than values obtained from the BET equation and from that calculated geometrically. This is attributable to the micropore filling effect.  相似文献   

7.
Aligned multiwalled carbon nanotube (CNT) arrays were synthesized by using an iron-based sol-gel catalyst and acetylene as the precursor. These CNTs show high purity, uniform diameters and pore-wall thickness. Low temperature nitrogen adsorption was employed to characterize the structural and surface properties of the as-synthesized sample and that modified with boiling concentrated nitric acid. The adsorption characteristics of the as-synthesized and modified CNTs were thoroughly investigated. High-resolution comparative alpha(s)-plot showed that the nitrogen adsorption on CNTs takes place via a multistage mechanism closely related to their structures. It was also found that the acid modification significantly increased the adsorption energy and enhanced the adsorption capacity under low pressures. High-resolution comparative method provided valuable insights about the surface and pore structures of CNTs.  相似文献   

8.
Quasi equilibrated temperature programmed desorption and adsorption (QE-TPDA) of hexane and cyclohexane was applied for characterization of zeolites 5A, ZSM-5, 13X, Y, NaMOR and ordered mesoporous silicas MCM-41, MCM-41/TMB, SBA-15 and HMS. Similar QE-TPDA profiles of hexane and cyclohexane with a single desorption maximum were observed for the wide pore zeolites. No adsorption of cyclohexane for zeolite 5A and a single desorption maximum for ZSM-5 were found, while two-step desorption profiles of hexane were observed for these zeolites. Similar values of the adsorption enthalpy and entropy of hexane and cyclohexane were obtained by fitting the Langmuir model functions for the zeolites X and Y. For NaMOR and ZSM-5 larger differences in these parameters were found. A single desorption peak found at low temperatures in the QE-TPDA profiles of hexane and cyclohexane for the studied silicas was attributed to the multilayered adsorption on their mesopore surface. The adsorption isobars calculated from the thermodesorption profiles were fitted with the BET function. This way values of the specific surface area and the adsorption heat were calculated. Additionally values of the initial heat of adsorption were found by fitting the Henry’s law to the high-temperature sections of the linearized isobars. The largest deviations from the BET and Henry functions and the largest values of the adsorption heats found for SBA-15 indicated the greatest heterogeneity of the adsorption sites on its surface.  相似文献   

9.
A carbon aerogel was obtained by carbonization of an organic aerogel prepared by sol-gel polymerization of resorcinol and formaldehyde in water. The carbon aerogel was then CO(2) activated at 800 degrees C to increase its surface area and widen its microporosity. Evolution of these parameters was followed by gas adsorption and small- and wide-angle X-ray scattering (SAXS and WAXS, respectively) with contrast variation by using dry and wet (immersion in benzene and m-xylene) samples. For the original carbon aerogel, the surface area, S(SAXS), obtained by SAXS, is larger than that obtained by gas adsorption (S(ads)). The values become nearly the same as the degree of activation of the carbon aerogel increases. This feature is due to the widening of the narrow microporosity in the carbon aerogel as the degree of activation is increased. In addition, WAXS results show that the short-range spatial correlations into the assemblies of hydrocarbon molecules confined inside the micropores are different from those existing in the liquid phase.  相似文献   

10.
The use of active carbons for the removal of toxic organic compounds, for example from air or smoke, is of significant interest. In this paper, the equilibrium and dynamic adsorption characteristics of two active carbons are explored; one microporous coconut based and the other micro-mesoporous derived from a synthetic resin. Benzene, acetaldehyde and acrylonitrile were chosen as the probe toxicant vapours and adsorption was measured at a temperature of 298 K. The nitrogen equilibrium data (at 77 K), analysed using the BET, Dubinin-Radushkevich equations and DFT models, showed a higher overall adsorption capacity, more supermicroporosity and a higher proportion of pores wider than 2 nm for the synthetic resin based material. A micropore distribution biased toward the ultramicropore width-range was observed for the nutshell material. As a consequence, the characteristic adsorption energies in micropores are higher for the nutshell material than the resin based carbon. The effect of these different pore size characteristics on the adsorption kinetics, obtained by fitting the data to the linear driving force (LDF) model, is that the resulting adsorption rate constants are higher across much of the relative pressure range (p/p s ) studied for the resin based carbon compared to the nutshell material. Significantly, the wider pores of the resin-based carbon result in higher rates of adsorption in the micropore filling domain. When evaluated under dynamic conditions in cigarette smoke, improved toxicant removal was observed using the resin based carbon.  相似文献   

11.
A new class of composite materials is introduced. Fine powders of silica, titania, Y-modified zirconia, and three types of alumina were pressed and sintered to form porous monoliths with relatively uniform pore structure. Carbon was then deposited in the pores of such monoliths by thermal decomposition of dichloromethane, cyclohexene, and glucose. The structure of the carbon deposit was studied by low-temperature nitrogen adsorption and by thermal analysis. The composite materials were used as electrodes in electrochemical capacitors with 1-ethyl-3-methylimidazolium trifluoromethylsulfonate (a low-temperature ionic liquid) as the electrolyte. High capacitances were observed for glucose-derived materials, which had high specific surface areas.  相似文献   

12.
分子筛膜的合成和应用是近年来的研究热点, 特别是具有独特孔道结构的MFI 型分子筛膜. 但由于膜内有机模板剂在高温脱除时会导致膜产生缺陷, 进而影响分子筛膜的应用. 所以分子筛膜及分子筛晶体中有机模板剂的低温脱除工艺一直是研究者们致力解决的问题之一. 本文系统考察了高硅ZSM-5分子筛晶体内有机模板剂(四丙基氢氧化铵, TPAOH)在H2/N2气氛下的低温裂解脱除规律, 采用低温加氢裂解工艺, 在350 ℃以下可有效脱除分子筛晶体孔道内的有机模板剂. 通过对裂解后分子筛晶体的比表面积(BET)、热失重(TG)、傅里叶变换红外(FTIR)光谱和拉曼光谱表征证实, 相比于空气和氮气气氛, 含氢还原性气氛更有利于模板剂的低温脱除, 脱除率随温度的升高而增加; 280 ℃时, 加氢裂解后晶体的BET比表面积已达到252 m2·g-1, 仍有少量有机残余物; 350 ℃时, 加氢裂解后晶体的BET比表面积可达到399 m2·g-1, 仅有微量无机碳残余物. 此外, 低温加氢裂解后的分子筛表面相对洁净, 且氨气程序升温脱附(NH3-TPD)结果表明低温加氢裂解后的ZSM-5 分子筛晶体具有相对较多的酸性位.  相似文献   

13.
The surface and adsorption characteristics of carbon blacks treated with H(3)PO(4), KOH, and C(6)H(6) were investigated. The equilibrium spreading pressure (pi(e)), surface energy (gamma(s)), and specific surface area (S(BET)) were studied by the BET method with N(2) adsorption. In this work, an interpretation based on the nitrogen amount adsorbed for filling a monolayer (a(0)) was proposed for the determination of the Gibbs free energy of nitrogen adsorption, allowing evaluation of the equilibrium spreading pressure or London dispersive component of the surface free energy of the carbon blacks studied. Also, the microstructures of the carbon blacks treated were investigated by transmission electron microscopy. Acidic treatment led to significant decreases in adsorption amount, S(BET), and surface free energy of the carbon blacks, due to aggregation of the microstructures and increasing weight of the swollen specimen in an equilibrium state. Polar basic and nonpolar chemical treatments resulted in an increase of the equilibrium spreading pressure or London dispersive component of surface free energy of the carbon blacks without significantly changing the surface and adsorption properties and microstructures. Results from the surface energetics and parameter of polymer-filler interaction (chi) showed that the tearing energy of the composites is greatly dependent on the carbon blacks studied in the treatment. Copyright 2000 Academic Press.  相似文献   

14.
Mesoporous activated carbon samples were prepared from electrospun PAN-based carbon fibers using physical activation with silica. Textural characterization was performed using nitrogen adsorption at 77 K. The BET specific surface area and pore size distribution of silica activated carbon materials were investigated. According to the increment of silica, BET specific surface area was increased about thirty times and it was found that silica activated carbon materials were highly mesoporous by studying pore surface distribution and pore volume distribution. Surface morphology of silica activated carbon materials were observed by SEM images. The spherical typed carbon materials were investigated. The diameter of spherical typed carbon materials was increased in proportional of the increment of silica.  相似文献   

15.
We report the adsorption of phenol and dopamine probe molecules, from aqueous solution with NaCl, on commercial multiwall carbon nanotubes (MWCNT) and on their carboxylated derivative. The nanotubes were fully characterized by high resolution transmission electron microscopy (HRTEM), small angle X-ray scattering (SAXS), potentiometric titration, electrophoretic mobility, and nitrogen adsorption (77K) measurements. The experimental pollutant isotherms, evaluated using the Langmuir model, showed that only 8-12% and 21-32% of the BET surface area was available for phenol and dopamine, respectively, which is far below the performance of activated carbons. Influence of the pH was more pronounced for the oxidized MWCNT, particularly with dopamine. The strongest interaction and the highest adsorption capacity occurred at pH 3 with both model pollutants on both types of nanotubes. Although the surface area available for adsorption is far lower in MWCNTs than in activated carbons, it is nonetheless substantial. In particular, delayed release of toxic molecules that are either adsorbed on the surface or trapped in the inner bore of such systems could constitute an environmental hazard. The need for further adsorption studies with regard to their environmental aspects is therefore pressing, particularly for MWCNTs in their functionalized state.  相似文献   

16.
The surface area is one of the most important quantities for characterizing novel porous materials. The BET analysis is the standard method for determining surface areas from nitrogen adsorption isotherms and was originally derived for multilayer gas adsorption onto flat surfaces. Metal-organic frameworks (MOFs) are a relatively new class of crystalline, porous materials that have been shown to exhibit very large BET surface areas. These materials are microporous and possess surfaces that are far from flat. In some MOFs, adsorption occurs through a pore-filling mechanism rather than by layer formation. Thus, it is unclear whether BET surface area numbers reported for these materials are truly meaningful. Given the standard practice of reporting BET surface areas for novel porous materials, a critical test of the BET method is much needed. In this work, grand canonical Monte Carlo simulations were used to predict adsorption isotherms for nitrogen in a series of MOFs. The predicted isotherms were used as pseudoexperimental data to test the applicability of the BET theory for obtaining surface areas of microporous MOFs. BET surface areas calculated from the simulated isotherms agree very well with the accessible surface areas calculated directly from the crystal structures in a geometric fashion. In addition, the surface areas agree well with experimental reports in the literature. These results provide a strong validation that the BET theory can be used to obtain surface areas of MOFs.  相似文献   

17.
The dependence of the physicochemical and structural–adsorption properties of natural and acid–thermal modified clinoptilolite, and of Pd(II)–Cu(II) catalysts based on them, on the duration of acid–thermal modification is investigated. The samples under study are described via XRD and thermal gravimetric (DTG and DTA) analysis, IR, DR UV–Vis, EPR spectroscopy, and water vapor adsorption. Values of both the specific surface area (Ssp) and pH of aqueous suspensions are determined. The resulting catalysts are tested in the reaction of low-temperature carbon monoxide oxidation with air oxygen. A conclusion is drawn about the nature of surface bimetallic Pd(II)–Cu(II) complexes. The greatest catalytic activity is shown by complexes based on clinoptilolite and modified with 3 M HNO3 for 0.5 and 1 h.  相似文献   

18.
19.
Mesoporous carbons with differentiated properties were synthesized by using the method of impregnation of mesoporous well-organized silicas. The obtained carbonaceous materials and microporous activated carbon were investigated by applying different methods in order to determine their structural, surface and adsorption properties towards selected dyes from aqueous solutions. In order to verify applicability of adsorbents for removing dyes the equilibrium and kinetic experimental data were measured and analyzed by applying various equations and models. The structural and acid-base properties of the investigated carbons were evaluated by Small-Angle X-ray Scattering (SAXS) technique, adsorption/desorption of nitrogen, potentiometric titration, and Transmission Electron Microscopy (TEM). The results of these techniques are complementary, indicating the type of porosity and structural ordering, e.g., the pore sizes determined from the SAXS data are in good agreement with those obtained from nitrogen sorption data. The SAXS and TEM data confirm the regularity of mesoporous carbon structure. The adsorption experiment, especially kinetic measurements, reveals the utility of mesoporous carbons in dye removing, taking into account not only the adsorption uptake but also the adsorption rate.  相似文献   

20.
Differential and integral heats of oleic, linoleic, and linolenic acid adsorption on the surface of finely dispersed magnetite from solutions in carbon tetrachloride and hexane are measured by the calorimetric method. The thermodynamic parameters of the adsorption for the systems under examination are calculated from the obtained experimental data. It is discovered that, at low concentrations, the volume filling of micropores in the particle aggregates of the adsorbent occurs with the formation of ordered adsorbate structures in the pores. At high concentrations, the fatty acids are adsorbed in mesopores and on the outer surface of the adsorbent. It is shown that, at high concentrations, the key contributions to the integral heat of adsorption are made by the endothermic processes of desolvation of adsorbates and the adsorbent surface, as well as by the competitive adsorption of solvent and fatty acid molecules on the active sites of the adsorbent surface.Translated from Kolloidnyi Zhurnal, Vol. 66, No. 6, 2004, pp. 784–787.Original Russian Text Copyright © 2004 by Korolev, Blinov, Ramazanova.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号