首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Studies have been carried out using immobilized Z.mobilis in fluidized-bed bioreactors and have emphasized operation during high productivity and conversion. The bacteria are immobilized within small uniform beads (~1 to 1.5-mm diam) of K-carrageenan at cell loadings of 15-50 g (dry wt)/L. Conversion and productivity were measured under a variety of conditions, including feedstocks, flow rates, temperature, pH, and column sizes (up to 2.5 m tall). Volumetric productivities of 50-120 g EtOH/h-L reactor volume have been achieved. Productivities of 60 g/h-L are demonstrated from a 15% feed with residual glucose concentrations of less than 0.1% and 7.4% EtOH in the tallest fermentor. Among feeds of 10, 15, and 20% dextrose, the 15% gave the highest productivity and avoided substrate inhibition. A temperature of 30°C and pH 5 were the optimum conditions. The ethanol yield was shown to be nearly constant at 0.49 g EtOH/g glucose, or 97% of the theoretical under a variety of conditions and transients. The biocatalyst beads have been shown to remain active for two months. Nonsterile feed has been used for weeks without detrimental contamination. The advantages of this advanced bioreactor system over conventional batch technology are discussed.  相似文献   

2.
The continuous cofermentation performance of xylose-fermentingZymomonas mobilis at 30°C and pH 5.5 was characterized using a pure-sugar feed solution that contained 8 g/L glucose and 40 g/L xylose. Successful chemostat start up resulted in complete utilization of glucose and greater than 85% utilization of xylose, but was only reproducibly achieved using initial dilution rates at or less than 0.04/h; once initiated, cofermentation could be maintained at dilution rates of 0.04 to 0.10/h. Whereas xylose and cell-mass concentrations increased gradually with increasing dilution rate, ethanol concentrations and ethanol yields on available sugars remained approximately constant at 20–22 g/L and 80–90% of theoretical, respectively. Volumetric and specific ethanol productivities increased linearly with increasing dilution rate, rising from approx 1.0 each (g/L/h or g/g/h) at a dilution rate of 0.04/h to approx 2.0 each (g/L/h or g/g/h) at a dilution rate of 0.10/h. Similarly, specific sugar-utilization rates increased from approx 2.0 g/g/h at dilution rate 0.04/h to approx 3.5 g/g/h at dilution rate of 0.10/h. The estimated values of 0.042 g/g for the maximum Z.mobilis cell-mass yield on substrate and 1.13 g/g/h for the minimum specific substrate utilization rate required for cellular maintenance energy are within the range of values reported in the literature. Results are also presented which suggest that long-term adaptation in continuous culture is a powerful technique for developing strains with higher tolerance to inhibitory hemicellulose hydrolyzates.  相似文献   

3.
4.
This study documents the similar pH-dependent shift in pyruvate metabolism exhibited byZymomonas mobilis ATCC 29191 and ATCC 39676 in response to controlled changes in their steady-state growth environment. The usual high degree of ethanol selectivity associated with glucose fermentation by Z.mobilis is associated with conditions that promote rapid and robust growth, with about 95% of the substrate (5% w/v glucose) being converted to ethanol and CO2, and the remaining 5% being used for the synthesis of cell mass. Conditions that promote energetic uncoupling cause the conversion efficiency to increase to 98% as a result of the reduction in growth yield (cell mass production). Under conditions of glucose-limited growth in a chemostat, with the pH controlled at 6.0, the conversion efficiency was observed to decrease from 95% at a specific growth rate of 0.2/h to only 80% at 0.042/h. The decrease in ethanol yield was solely attributable to the pH-dependent shift in pyruvate metabolism, resulting in the production of lactic acid as a fermentation byproduct. At a dilution rate (D) of 0.042/h, decreasing from pH 6.0 to 5.5 resulted in a decrease in lactic acid from 10.8 to 7.5 g/L. Lactic acid synthesis depended on the presence of yeast extract (YE) or tryptone in the 5% (w/v) glucose-mineral salts medium. At D = 0.15/h, reduction in the level of YE from 3 to 1 g/L caused a threefold decrease in the steady-state concentration of lactic acid at pH 6. No lactic acid was produced with the same mineral salts medium, with ammonium chloride as the sole source of assimilable nitrogen. With the defined salts medium, the conversion efficiency was 98% of theoretical maximum. When chemostat cultures were used as seed for pH-stat batch fermentations, the amount of lactic acid produced correlated well with the activity of the chemostat culture; however, the mechanism of this prolonged induction  相似文献   

5.
The bacteriumZymomonas mobilis may be utilized to produce ethanol from glucose in a cross-linked immobilized cell reactor. Reactor startup is much more rapid with cross-linkedZymomonas than with the yeastSaccharomyces cerevisiae. Volumetric ethanol productivities (based on liquid holdup) three times those obtained with cross-linked yeast, and comparable to those obtained withZymomonas immobilized by other methods, are possible.  相似文献   

6.
Efficient utilization of the pentosan fraction of hemicellulose from lignocellulosic feedstocks offers an opportunity to increase the yield and to reduce the cost of producing fuel ethanol. During prehydrolysis (acid hydrolysis or autohydrolysis of hemicellulose), acetic acid is formed as a consequence of the deacetylation of the acetylated moiety of hemicellulose. Recombinant Escherichia coli B (ATCC 11303), carrying the plasmid pLO1297 with pyruvate decarboxylase and alcohol dehydrogenase II genes from Zymomonas mobilis (CP4), converts xylose to ethanol with a product yield that approaches theoretical maximum. Although other pentose-utilizing microorganisms are inhibited by acetic acid, the recombinant E. coli displays a high tolerance for acetic acid. In xylose fermentations with a synthetic medium (Luria broth), where the pH was controlled at 7, neither yield nor productivity was affected by the addition of 10.7 g/L acetic acid. Nutrient-supplemented, hardwood (aspen) hemicellulose hydrolysate (40.7 g/L xylose) was completely fermented to ethanol (16.3 g/L) in 98 h. When the acetic acid concentration was reduced from 5.6 to 0.8 g/L, the fermentation time decreased to 58 h. Overliming, with Ca(OH)2 to pH 10, followed by neutralization to pH 7 with sulfuric acid and removal of insolubles, resulted in a twofold increase in volumetric productivity. The maximum productivity was 0.93 g/L/h. The xylose-to-ethanol conversion efficiency and productivity in Ca(OH)2-treated hardwood prehydrolysate, fortified with only mineral salts, were 94% and 0.26 g/L/h, respectively. The recombinant E. coli exhibits a xylose-to-ethanol conversion efficiency that is superior to that of other pentose-utilizing yeasts currently being investigated for the production of fuel ethanol from lignocellulosic materials.  相似文献   

7.
Cofermentation of xylose and arabinose, in addition to glucose, is critical for complete bioconversion of lignocellulosic biomass, such as agricultural residues and herbaceous energy crops, to ethanol. A factorial design experiment was used to evaluate the cofermentation of glucose, xylose, and arabinose with mixed cultures of two genetically engineeredZymomonas mobilis strains (one ferments xylose and the other arabinose). The pH range studied was 5.0-6.0, and the temperature range was 30-37°C The individual sugar concentrations used were 30 g/L glucose, 30 g/L xylose, and 20 g/L arabinose. The optimal cofermentation conditions obtained by data analysis, using Design Expert software, were pH 5.85 and temperature 31.5°C. The cofermentation process yield at optimal conditions was 72.5% of theoritical maximum. The results showed that neither the arabinose strain nor arabinose affected the performance of the xylose strain; however, both xylose strain and xylose had a significant effect on the performance of the arabinose strain. Although cofermentation of all three sugars is achieved by the mixed cultures, there is a preferential order of sugar utilization. Glucose is used rapidly, then xylose, followed by arabinose.  相似文献   

8.
The effect of the trace metals Cu, K, Na, and Ca, separately or in mixture, on fermentation time, ethanol production rate, and cell growth in the fermentation of synthetic media containing sucrose is discussed. The results are related to the range of contents found in raw materials, molasses and raisins, in order to determine their optimum concentrations for alcohol production.  相似文献   

9.
The production of ethanol from starch was studied in a fluidized-bed reactor (FBR) using co-immobilizedZymomonas mobilis and glucoamylase. The FBR was a glass column of 2.54 cm in diameter and 120 cm in length. TheZ. mobilis and glucoamylase were co-immobilized within small uniform beads (1.2-2.5 mm diameter) of κ-carrageenan. The substrate for ethanol production was a soluble starch. Light steep water was used as the complex nutrient source. The experiments were performed at 35κC and pH range of 4.0-5.5. The substrate concentrations ranged from 40 to 185 g/L, and the feed rates from 10 to 37 mL/min. Under relaxed sterility conditions, the FBR was successfully operated for a period of 22 d, during which no contamination or structural failure of the biocatalyst beads was observed. Volumetric productivity as high as 38 g ethanol/(Lh), which was 74% of the maximum expected value, was obtained. Typical ethanol volumetric productivity was in the range of 15-20 g/(Lh). The average yield was 0.49 g ethanol/g substrate consumed, which was 90% of the theoretical yield. Very low levels of glucose were observed in the reactor, indicating that starch hydrolysis was the rate-limiting step.  相似文献   

10.
In this work, the effect of the addition of different concentrations of Tween-80 and three different zeolite-like products on enzymatic hydrolysis, ethanol fermentation, and simultaneous saccharification and fermentation (SSF) process has been investigated. The ability of these products to enhance the effectiveness of the SSF process to ethanol of steam-exploded poplar biomass using the thermotolerant strainKluyveromyces marxianus EMS-26 has been tested. Tween-80 (0.4 g/L) increased enzymatic hydrolysis yield by 20% when compared to results obtained in hydrolysis in absence of the additive. Zeolite-like products (ZESEP-56 and ZECER-56) (2.5 g/L) improved rates of conversion and ethanol yields in the fermentation of liquid fraction recovered from steam-exploded poplar. The periods required for the completion of fermentation were approx 10 h in the presence of zeolite-like products and 24 h in the absence of additives. The probable mode of action is through lowered levels of inhibitory substances because of adsorption by the additive.  相似文献   

11.
Escherichia coli strain NZN111, which is unable to grow fermentatively because of insertional inactivation of the genes encoding pyruvate: formate lyase and the fermentative lactate dehydrogenase, gave rise spontaneously to a chromosomal mutation that restored its ability to ferment glucose. The mutant strain, named AFP111, fermented glucose more slowly than did its wild-type ancestor, strain W1485, and generated a very different spectrum of products. AFP111 produced succinic acid, acetic acid, and ethanol in proportions of approx 2:1:1. Calculations of carbon and electron balances accounted fully for the observed products; 1 mol of glucose was converted to 1 mol of succinic acid and 0.5 mol each of acetic acid and ethanol. The data support the emergence in E.coli of a novel succinic acid:acetic acid:ethanol fermentation pathway.  相似文献   

12.
The cybernetic approach to modeling of microbial kinetics in a mixedsubstrate environment has been used in this work for the fermentative production of ethanol from cheese whey. In this system, the cells grow on multiple substrates and generate metabolic energy during product formation. This article deals with the development of a mathematical model in which the concept of cell maintenance was modified in light of the specific nature of product formation. Continuous culture data for anaerobic production of ethanol byKluyveromyces marxianus CBS 397 on glucose and lactose were used to estimate the kinetic parameters for subsequent use in predicting the behavior of microbial growth and product formation in new situations.  相似文献   

13.
The potential market for lactic acid as the feedstock for biodegradable polymers, oxygenated chemicals, and specialty chemicals is significant. L-lactic acid is often the desired enantiomer for such applications. However, stereospecific lactobacilli do not metabolize starch efficiently. In this work, Argonne researchers have developed a process to convert starchy feedstocks into L-lactic acid. The processing steps include starch recovery, continuous liquefaction, and simultaneous saccharification and fermentation. Over 100 g/L of lactic acid was produced in less than 48 h. The optical purity of the product was greater than 95%. This process has potential economical advantages over the conventional process.  相似文献   

14.
Xylans are the major components of the hemicellulosic fraction of lignocellulosic biomass and their hydrolysis can be obtained using xylanases fromPenicillium janthinellum. In this work, sugarcane bagasse hemicellulosic hydrolysate was used as the substrate for producing xylanase. The precipitation of these enzymes was studied using ethanol and Na2SO4 as precipitating agents. Ethanol precipitation experiments were performed batchwise in concentrations ranging from 10 to 80%, pH 4.0 to 7.0, at 4áC. The concentrations used in the precipitations with Na2SO4 were from 5 to 60% at pH 5.5 and 25áC. Solubility curves as a function of xylanase activity and total protein for both precipitating agents were made. According to the results, Na2SO4 is not appropriate for precipitating xylanases in this medium since at salt concentrations higher than 25%, the enzyme was denaturated and at this concentration less than 80% of the enzyme and total protein were precipitated. Because of differences in xylanase and total protein solubility, a fractionated precipitation using ethanol can be performed, since with 40% ethanol, 49% of the total protein was precipitated and more than 95% of the enzyme was kept in solution. On the other hand approx 100% of the xylanases were recovered by precipitation after adding 80% ethanol.  相似文献   

15.
In ethanol production from lignocellulose by enzymatic hydrolysis and fermentation, it is desirable to minimize addition of fresh-water and waste-water streams, which leads to an accumulation of substances in the process. This study shows that the amount of fresh water used and the amount of waste water thereby produced in the production of fuel ethanol from softwood, can be reduced to a large extent by recycling of either the stillage stream or part of the liquid stream from the fermenter. A reduction in fresh-water demand of more than 50%, from 3 kg/kg dry raw material to 1.5 kg/kg dry raw material was obtained without any negative effects on either hydrolysis or fermentation. A further decrease in the amount of fresh water, to one-fourth of what was used without recycling of process streams, resulted in a considerable decrease in the ethanol productivity and a slight decrease in the ethanol yield  相似文献   

16.
Experimental results are presented for continuous conversion of pretreated hardwood flour to ethanol. A simultaneous saccharification and fermentation (SSF) system comprised ofTrichoderma reesei cellulase supplemented with additional β-glucosidase and fermentation bySaccharomyces cerevisiae was used for most experiments, with data also presented for a direct microbial conversion (DMC) system comprised ofClostridium thermocellum. Using a batch SSF system, dilute acid pretreatment of mixed hardwood at short residence time(10 s, 220°C, 1% H2SO4) was compared to poplar wood pretreated at longer residence time (20 min, 160°C, 0.45% H2SO4). The short residence time pretreatment resulted in a somewhat (10–20%) more reactive substrate, with the reactivity difference particularly notable at low enzyme loadings and/or low agitation. Based on a preliminary screening, inhibition of SSF by byproducts of short residence time pretreatment was measurable, but minor. Both SSF and DMC were carried out successfully in well-mixed continuous systems, with steady-state data obtained at residence times of 0.58–3 d for SSF as well as 0.5 and 0.75 d for DMC. The SSF system achieved substrate conversions varying from 31% at a 0.58-d residence time to 86% at a 2-d residence time. At comparable substrate concentrations (4–5 g/l) and residence times (0.5–0.58 d), substrate conversion in the DMC system (77%) was significantly higher than that in the SSF system (31%). Our results suggest that the substrate conversion in SSF carried out in CSTR is relatively insensitive to enzyme loading in the range 7–25 U/g cellulose and to substrate concentration in the range of 5–60 g/L cellulose in the feed.  相似文献   

17.
A new type of reactor, the attrition bioreactor, has been developed to increase the rate of the enzymatic hydrolysis of cellulose and also to cut pretreatment costs. It was found that the attrition bioreactor could be operated continuously or semicontinuously in conjunction with a membrane filter to produce a high cellulose conversion rate and low enzyme consumption. The membrane filter served to contain the enzyme and cellulose within the reactor while allowing sugar to permeate as a product.  相似文献   

18.
Sucrose phosphorylase fromLeuconostoc mesenteroides was immobilbilized by covalent linkage to several supports, and the specific activity recovery was 2-11%. The enzyme adsorbed onto DEAE-cellulose re tained about 18% specific activity and was stable over eight months. The optimum pH (7.0) and temperature (30°C) did not change after immobilization. Also there was no improvement of thermal stability, and Km for sucrose and phosphate was lower compared to the soluble enzyme.  相似文献   

19.
This article presents the advanced technology that has been developed by BioEnergy International of Gainesville, Florida, utilizing novel recombinant strains of bacteria developed by Lonnie Ingram of the University of Florida. The first commercial applications of these unique fermenting organisms convert 5-carbon sugars, as well as 6-carbon sugars, and oligomers of cellulose (e.g., cellobiose and cellotriose) directly to ethanol. The proposed systems that will be utilized for conversion of agricultural wastes, mixed waste papers, and pulp and paper mill waste in forthcoming commercial installations are now under design. This involves the extensive experience of Raphael Katzen Associates International, Inc. in acid hydrolysis, enzyme production, enzymatic hydrolysis, large-scale fermentation engineering, and distillation/dehydration. Specific examples of this advanced technology will be presented in different applications, namely:
1.  Conversion of the hemicellulose content of sugar cane bagasse to 5-carbon sugars by mild-acid prehydrolysis, followed by fermentation of the 5-carbon sugar extract with recombinantEscherichia coli in a commercial installation soon to be under construction in Brazil. This unique process utilizes the surplus hemicellulose fraction of bagasse not required for steam and power generation to produce ethanol, additional to that from the original cane juice, which has been converted by conventional sucrose fermentation to ethanol. The process also recovers and converts to ethanol the majority of sucrose normally lost with the bagasse fibers. Resultant beer is enriched in an innovative process to eliminate the need for incremental rectification capacity.
2.  Application of this technology to mixed waste paper in Florida, with a moderate loading of newsprint (85% mechanical wood fiber), will involve a mild-acid prehydrolysis, the partial extraction of the 5-carbon sugars produced from hemicellulose as a feedstock for propagation of the recombinantKlebsiella oxytoca bacterium. Included is a facility providing for in-house production of cellulase enzyme, as an active whole broth for direct use in simultaneous saccharification and fermentation (SSF) of the remaining cellulose and residual 5-carbon sugars to ethanol. This is followed by distillation and dehydration in the advanced commercially available low-energy recovery system.
3.  Another potential application of this unique technology involves utilization of a variety of wastes from several pulp and paper mills in close proximity, permitting collection of these wastes at low cost and reducing the considerable cost encountered in disposing of such low-energy wet waste. Based on pilot plant experiences with converting such waste by simultaneous enzymatic hydrolysis and fermentation, the same techniques will be applied as in the second case, with use of acid prehydrolysis only if the hemicellulose-derived sugars can be economically recovered. If not, acid hydrolysis will be eliminated and only the simultaneous saccharification and fermentation will be carried out, utilizing in-house-produced enzyme broth and recombinantKlebsiella oxytoca.
  相似文献   

20.
The enzymatic reaction in the simultaneous saccharification and fermentation (SSF) is operated at a temperature much lower than its optimum level. This forces the enzyme activity to be far below its potential, consequently raising the enzyme requirement. To alleviate this problem, a nonisothermal simultaneous saccharification and fermentation process (NSSF) was investigated. The NSSF is devised so that saccharification and fermentation occur simultaneously, yet in two separate reactors that are maintained at different temperatures. Lignocellulosic biomass is retained inside a column reactor and hydrolyzed at the optimum temperature for the enzymatic reaction (50°C). The effluent from the column reactor is recirculated through a fermenter, which runs at its optimum temperature (20-30°C). The cellulase enzyme activity is increased by a factor of 2-3 when the hydrolysis temperature is raised from 30 to 50°C. The NSSF process has improved the enzymatic reaction in the SSF to the extent that it reduces the overall enzyme requirement by 30-40%. The effect of temperature on β-glucosidase activity was the most significant among the individual cellulase compounds. Both ethanol yield and productivity in the NSSF are substantially higher than those in the SSF at the enzyme loading of 5 IFPU/g glucan. With 10 IFPU/g glucan, improvement in productivity was more discernible for the NSSF. The terminal yield attainable in 4 d with the SSF was reachable in 40 h with the NSSF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号