首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lead sulphide nanoparticles were prepared using a precursor and dual sources methods. The composites were fabricated by stabilizing chemically synthesized semiconductor PbS nanocrystals into laurylmethacrylate and ethyleneglycol dimethacrylate matrix in the presence of tri-n-octylphosphine. PbS nanocrystals were dispersed in toluene as a compatible medium for the polymerization and cross-linking of poly laurylmethacrylate networks. The nano-sized particles and polymer composites were characterized by XRD and TEM. Possible formulations and incorporation of these PbS nanoparticles in polymer matrix have been discussed. The reported lead sulphide nanoparticles into tailered polymeric system show greater uniformity and stability.  相似文献   

2.
Undoped and silver-doped TiO2 nanoparticles (Ti1?x Ag x O2, where x?=?0.00?C0.10) were synthesized by a sol?Cgel method. The synthesized products were characterized by X-ray diffraction (XRD), particle size analyzer (PSA), scanning electron microscope (SEM), and UV?CVisible spectrophotometer. XRD pattern confirmed the tetragonal structure of synthesized samples. Average crystallite size of synthesized nanoparticles was determined from X-ray line broadening using the Debye?CScherrer formula. The crystallite size was varied from 8 to 33?nm as the calcination temperature was increased from 300 to 800?°C. The incorporation of 3 to 5% Ag+ in place of Ti4+ provoked a decrease in the size of nanocrystals as compared to undoped TiO2. The SEM micrographs revealed the agglomerated spherical-like morphology of particles. SEM, PSA, and XRD measurements show that the particles size of the powder is in nanoscale. Optical absorption measurements indicated a red shift in the absorption band edge upon silver doping. Direct allowed band gap of undoped and Ag-doped TiO2 nanoparticles measured by UV?CVis spectrometer were 3.00 and 2.80?eV, respectively, at 500?°C.  相似文献   

3.
A new method for the preparation of semiconductor PbS quantum dot-doped Ormocer (Organically Modified Ceramic) has been developed. The Ormocer matrix was prepared through the hydrolysis and condensation of alkoxysilane precursors (sol-gel process). Formation of PbS particles took place in the porous Ormocer through H2S gas reaction with a lead precursor incorporated at the solution stage. Control of the PbS dot size was achieved through the use of organically substituted trifunctional silanes. Particle formation and growth was studied under different experimental conditions (e.g. temperature and lead precursor concentrations) where nucleation and aggregation processes occurred. Determination of the average particle size was done by XRD. Transmission electron microscopy was also used to determine particle diameter as well as particle size distribution. Optical absorption spectra were measured at the UV-VIS wavelength range. Absorption edge blue shifts showed the quantum confinement effect in these materials. The non-hydrolyzed groups bonded to the silane prevented uncontrolled nucleation and aggregation during the particle formation and growth, i.e. at the solution stage by the homogeneous distribution of the Pb salts or at the xerogel state by the capping of the growing particles.  相似文献   

4.
Uniform inorganic- (PbS) coated polymer core-shell and hollow PbS microspheres were prepared by an easy and economical approach. Monodisperse polystyrene (PS) microspheres were used as templates, as well as the core of the composite spheres; lead sulfide shells were obtained through the reaction of lead acetate (Pb(CH3COO)2) and thioacetamide (TAA) at room temperature. The morphologies and structures of the as-synthesized products were systematically characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), and Fourier transform infrared spectra (FTIR). The fluorescence property of the as-synthesized product was also investigated. A reasonable mechanism for the formation of PS–PbS core-shell and hollow PbS microspheres was discussed. According to a series of parallel experiments, effects of related experimental parameters were also carefully investigated, such as the molar ratio of Pb(CH3COO)2 to TAA, reaction temperature, etc.  相似文献   

5.
PbS doped-silica gels showing a visible absorption onset were prepared by the sol-gel method. PbS nanoparticles with strong quantum-confinement effect were obtained from sodium sulfide and lead nitrate by the reverse micelle method. Chemical parameters such as the water/surfactant and the [Pb2+]/[S2−] ratios play a very important role in the PbS particle size and in their absorption threshold. The PbS nanoparticles were dispersed in a hydrolyzed solution of TEOS and converted to homogeneous gels after heating. The absorption threshold of PbS doped-gel is blue shifted compared to the one of the as-prepared PbS particles. The non-linear optical properties of the PbS nanoparticle solution were measured by degenerate four-wave mixing and theX (3) value was estimated to be 1.95 10−11 esu.  相似文献   

6.
In this work a suspension of Nano-crystalline of ZnO particle is prepared by wet chemical at different temperature and concentration. From FTIR spectral exhibit present of Zn–O bond which indicate to formation ZnO particles. While all suspension and nano films exhibit a high transmittance in visible region about 90% which falls sharply in the UV region. The particle size is measured by using effective mass approximation (EMA), which was approximation (1.7–1.96 nm), and the band gap changes from 3.95 to 4.52eV for nanoparticles in suspension, and change from 3.76 to 3.94 eV for nanoparticles in ZnO film, which is change as function of concentration, temperature and aging time. Hall Effect measurements for ZnO films exhibit n-type conductivity for films deposited with activation energy 0.742eV at high temperature and 0.178eV at low temperature which is different as prepared sample conditions. Also the nanoparticle suspension and nanoparticle film could be implemented as a filter with variable cut off (8.9 × 1014–1.28 × 1015) HZ.  相似文献   

7.
硫化铅纳米材料合成的新方法   总被引:3,自引:1,他引:2  
以硫代碳酸盐为原料 ,用室温液相反应合成出前驱物硫代碳酸铅 ,在高压釜中 10 0℃加热 2h即得纳米PbS .用X射线粉末衍射 ,透射电镜对产物的组成、大小、形貌进行表征 .结果表明 ,产物纳米PbS为立方晶系结构 ,平均粒径为 2 0nm  相似文献   

8.
Silver nanoparticles were synthesized by UV irradiation of [Ag(NH3)2]+ aqueous solution using poly(N-vinyl-2-pyrrolidone) (PVP) as both reducing and stabilizing agents. The formation of silver nanoparticles was confirmed from the appearance of surface plasmon absorption maxima around 420 nm. It was found that the formation rate of silver nanoparticles from Ag2O was much quicker than that from AgNO3, and the absorption intensity increased with PVP concentration as well as irradiation time. The maximum absorption wavelength (λmax) was blue shift with increasing PVP content until 8 times concentration of [Ag(NH3)2]+ (wt%). The transmission electron microscopy (TEM) showed the resultant particles were 4–6 nm in size, monodisperse and uniform particle size distribution. X-ray diffraction (XRD) demonstrated that the colloidal nanoparticles were the pure silver. In addition, the silver nanoparticles prepared by the method were stable in aqueous solution over a period of 6 months at room temperature (25 °C).  相似文献   

9.
以醋酸铅为铅源,硫代乙酰胺为硫源,在表面活性剂十二烷基硫酸钠(SDS)和十六烷基三甲基溴化铵(CTAB)共同作用下,通过简单地调节水热反应的反应温度控制合成出球状、立方状和空心立方状PbS纳米晶。利用XRD、TEM对合成产物的结构和形貌进行了表征,发现合成的球状、立方状和空心立方状PbS纳米晶尺寸均一,直径为100 nm左右。对球状、立方状和空心立方状PbS纳米晶的形成机理进行了初探,结果表明反应温度较低时,水热反应初始阶段形成的PbS小颗粒呈球形,在表面活性剂SDS的烷基链模板和CTAB微胶束软模板共同作用下生成球状PbS纳米晶;反应温度较高时,水热反应初始阶段形成的PbS小颗粒由于自身的立方相岩盐晶体结构的影响有呈立方状趋势,在SDS和CTAB共同作用下产物堆积成空心立方体状或立方状。  相似文献   

10.
Bis(4-methylpiperidine-1-carbodithioato)-lead(II) and bis(4-benzylpiperidine-1-carbodithioato)-lead(II) were prepared and their molecular structures elucidated using single crystal X-ray crystallography and spectroscopic techniques. The compounds were used as precursors for the preparation of lead sulphide nano photocatalysts for the degradation of rhodamine B. The single crystal structures of the lead(II) dithiocarbamate complexes show mononuclear lead(II) compounds in which each lead(II) ion coordinates two dithiocarbamato anions in a distorted tetrahedral geometry. The compounds were thermolyzed at 180 ℃ in hexadecylamine (HDA), octadecylamine (ODA), and trioctylphosphine oxide (TOPO) to prepare HDA, ODA, and TOPO capped lead sulphide (PbS) nanoparticles. Powder X-ray diffraction (pXRD) patterns of the lead sulphide nanoparticles were indexed to the rock cubic salt crystalline phase of lead sulphide. The lead sulphide nanoparticles were used as photocatalysts for the degradation of rhodamine B with ODA-PbS1 achieving photodegradation efficiency of 45.28% after 360 min. The photostability and reusability studies of the as-prepared PbS nanoparticles were studied in four consecutive cycles, showing that the percentage degradation efficiency decreased slightly by about 0.51–1.93%. The results show that the as-prepared PbS nanoparticles are relatively photostable with a slight loss of photodegradation activities as the reusability cycles progress.  相似文献   

11.
Nanocrystalline cadmium peroxide thin film has been electrodeposited on indium doped tin oxide glass substrate from aqueous solution at room temperature. The grain size of the nanocrystals of the film is estimated from XRD and is about 14 nm. The deposits are decomposed at 228 °C by formation of CdO, releasing plentiful heat at same time. The band-gap of the nanocrystalline CdO film made from decomposition of electrodeposited CdO2 is around 2.4 eV.  相似文献   

12.
Silver oxalate Ag2C2O4, was already proposed for soldering applications, due to the formation when it is decomposed by a heat treatment, of highly sinterable silver nanoparticles. When slowly decomposed at low temperature (125 °C), the oxalate leads however to silver nanoparticles isolated from each other. As soon as these nanoparticles are formed, the magnetic susceptibility at room temperature increases from −3.14 10−7 emu.Oe−1.g−1 (silver oxalate) up to −1.92 10−7 emu.Oe−1.g−1 (metallic silver). At the end of the oxalate decomposition, the conventional diamagnetic behaviour of bulk silver, is observed from room temperature to 80 K. A diamagnetic-paramagnetic transition is however revealed below 80 K leading at 2 K, to silver nanoparticles with a positive magnetic susceptibility. This original behaviour, compared to the one of bulk silver, can be ascribed to the nanometric size of the metallic particles.  相似文献   

13.
Nanocrystals of lead sulfide were grown in TiO2 (titania) thin films prepared by a sol-gel process. The synthetic procedure as well as the structural, optical, and electrical properties of the films are demonstrated. The structures and morphology of PbS nanocrystals were analyzed using HRTEM, SAED, AFM, HRSEM, XRD and EDAX elemental analysis technique. When the concentration of PbS in the titania matrix is 20 mol%, PbS NCs with a diameter of 2.0 nm are created. At a higher PbS concentration (> 40 mole%) in the titania matrix, PbS NCs and PbS clusters are created not only within the TiO2 film but also on the external surface of the TiO2 film. By increasing the PbS concentration up to 50 mol%, PbS nanocrystals of 6–8 nm in diameter are formed within the titania film and PbS clusters with a base size of about 100 nm2 and a height up to about 20 nm were self assembled on the external surface of TiO2 film. Quantum size effect and band gap energies were obtained from shifts of the absorption edge. For electrical measurements, PbS–TiO2 films were deposited on an ITO/glass substrate, and then covered with gold contact. The electrical properties of ITO/PbS NCs–TiO2/Au and ITO/PbS NCs–TiO2/PbS cluster/Au structures were studied. I–V characteristics of the one layer structure are nearly linear and symmetric, while those of the two-layer structure exhibit rectifying behavior.  相似文献   

14.
Metal-sulfides semiconductor nanosheets are talented entrant to be applied in electro-optic devices. Hence, the synthesis of PbS nanosheets is achieved in the current work using a simple route. The synthesized nanosheets were characterized by X-ray diffraction (XRD), FT-Raman, scanning electron microscope (SEM), UV-Visible, Photoluminescence (PL) and impedance spectroscopy techniques. XRD pattern and Raman spectrum confirms the formation of crystalline structure of PbS nanosheets. SEM study shows that the synthesized PbS is well defined nanosheets of <5 nm thicknesses. The absorption band edge is found to be remarkably blue shifted in nanosheets compare to bulk. The energy gap is calculated to be 1.16 eV which is about 3 times superior than the bulk value (0.41 eV). The enhancement of band gap indicates the occurrence of quantum confinement effect in PbS nanosheets. A strong violet emission band at ∼405 nm is observed in PL spectrum which is assigned to electrons transition from conduction-band edge to holes, ensnared at interstitial Pb2+ sites.  相似文献   

15.
《化学:亚洲杂志》2017,12(22):2942-2949
Hollow hybrid nanostructures have received significant attention because of their unique structural features. This study reports a facile ion adsorption–heating method to fabricate hollow PbS‐TiO2 hybrid particles. In this method, the TiO2 spheres used as a substrate material to grow PbS are aggregates of many small amorphous TiO2 particles, and each small particle is covered with thioglycolic acid ligands through Ti4+–carboxyl coordination. When Pb2+ ions are added to a colloidal solution of these TiO2 spheres, these ions are adsorbed by sulfhydryl (‐SH) groups to form metal thiolates, and the C−S bond is dissociated by heating to release S2−. The S2− ions react with Pb2+ ions to form PbS without additive sulfur sources. Additionally, the amorphous TiO2 spheres are transformed into the anatase phase during the heating process. As a result, the crystallization of TiO2 spheres along with the formation of PbS is simultaneously carried out by heating. During the heating process, owing to the Kirkendall effect of S2− diffusion and the Ostwald ripening effect of the crystallization of amorphous TiO2 spheres, PbS‐TiO2 hollow hybrid structures can be obtained. The XRD and XPS characterizations proved the formation of anatase TiO2 and PbS. The TEM characterization confirmed the formation of hollow structures in the PbS‐TiO2 hybrid sample. The photocatalytic activity of the hollow PbS‐TiO2 hybrid spheres have been investigated for the degradation of Cr6+ under visible light. The results show that hollow PbS‐TiO2 hybrid spheres exhibited the highest photocatalytic activity, in which almost all the Cr6+ was degraded after 140 min.  相似文献   

16.
An electrochemical reduction method was used for the preparation of TiO2 nanoparticles in which agglomeration with formation of undesired metal powders is prevented by the presence of ammonium stabilizers. These synthesized nanoparticles were characterized by UV–Visible, XRD, SEM–EDS and TEM analysis techniques. These synthesized nanoparticles of TiO2 were tested as heterogeneous catalyst for the synthesis of tetrahydrobenzo[b]pyran derivative using three components reaction of aromatic aldehyde, dimedione and malononitrile by simply stirring at room temperature in a solvent free condition.  相似文献   

17.
Stable hydrosols of copper sulfide nanoparticles are synthesized by heating aqueous solutions with different ratios of sodium thiosulfate and copper sulfate in the presence of polyvinylpyrrolidone and studied by a number of physicochemical methods in situ (optical spectroscopy, dynamic light scattering) and ex situ (transmission electron microscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy). The main product is CuS covellite nanoparticles with some impurities of other phases (Cu2S, Cu1,8S, Cu7S4). With an increase in the initial molar ratio S2O 2?3 / Cu from 0.2 to 5 the nanoparticle size increases from 1-5 nm to 30-50 nm and then decreases to 4 nm at a ratio of 10. A substantial increase in the intensity of plasmon absorption within 800-1500 nm is observed during the formation of planar nanoparticles with a lateral size of about 30 nm at S2O 2?3:Cu = 5. A band gap obtained from both direct and indirect optical absorption spectra of sulfides (2.6 eV and 1.7 eV respectively) remains constant for all particles.  相似文献   

18.
NiO nanoparticles with an average size of about 12 nm were easily prepared via the thermal decomposition of hexa(ammine)Ni(II) nitrate complex, [Ni(NH3)6](NO3)2, at low temperature of 250 °C. The product was characterized by thermal analysis (TGA/DTA), X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FT-IR), UV-Vis spectroscopy, BET specific surface area measurement, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and magnetic measurement. The magnetic measurement revealed a small hysteresis loop at room temperature, confirming a superparamagnetic (weak ferromagnetic) nature of the synthesized NiO nanoparticles. Indeed, the NiO nanoparticles prepared by this method could be an appropriate semiconductor material due to the optical band gap of 3.35 eV which shows a red shift in comparison with the previous reports. This method is simple, fast, safe, low-cost and also suitable for industrial production of high purity NiO nanoparticles for applied purposes.  相似文献   

19.
The nanoparticles of NiCr x Fe2?x O4 were synthesized through sol–gel reactions involving nitrates of Ni, Cr and Fe in an aqueous medium containing citric acid. The cubic spinel structure in single phase with nanometric crystallite size of ~5 nm, the spherical morphology and magnetic relaxations were examined through XRD, TEM and Mössbauer techniques. The abnormal occurrence of finite remanance (M r ) and coercivity (H c ) resulted in the room temperature dc magnetization measurements for the small particles authenticate the ferrimagnetic regime, as proposed by the room temperature Mössbauer results of the samples, with a proximate superparamagnetic regime still at lower particle volumes. This could be attributed to the antiferromagnetic spin interactions of chromium ions at octahedral sites and subsequently the over-occupancy of the rest of the cations at tetrahedral sites. In justification to this, the magnetocrystalline anisotropy constant, K, is estimated to have value relatively high of the order of 107 erg/cm3 at room temperature for all studied concentrations.  相似文献   

20.
Ultrafine magnetite particles are prepared through an electrochemical process, at room temperature, from an iron-based electrode immersed in an alkaline aqueous medium containing complexing compounds. XRD and chemical analysis indicate that the product is pure magnetite, Fe3O4. The size and morphology of the particles are studied by SEM. The magnetite nanoparticles present a magnetoresistance of almost 3%, at 300 K, under a magnetic field of 1 T. A reactive mechanism for the electrochemical process is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号