首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 118 毫秒
1.
We present an experimental study of primary pulse transmission in coupled ordered steel granular chains embedded in poly-di-methyl-siloxane (PDMS) elastic matrix. Two granular one-dimensional chains are considered (an ‘excited’ and an ‘absorbing’ one), each composed of 11 identical steel beads of 9.5 mm diameter with the centerline of the chain spaced at fixed distances of 0.5, 1.5 or 2.5 mm apart. We directly force one of the chains (the excited one) by a transient pulse and measure, by means of laser vibrometry, the primary transmitted pulses at the end beads of both chains and at the first bead of the absorbing chain. It is well known that the dynamics of this type of ordered granular media is strongly nonlinear due, (i) to Hertzian interactions between adjacent beads, and (ii) to possible bead separations in the absence of compressive forces and ensuing collisions between neighboring beads. Accordingly, we develop a strongly nonlinear theoretical model that takes into account the coupling of the granular chains due to the PDMS matrix, with the aim to model primary pulse transmission in this system. After validating the model with experimental measurements, we employ it in a predictive fashion to estimate energy transfer between chains as a function of the interspatial distance between chains. Furthermore, based on this model we perform predictive matrix design to achieve maximum energy transfer from the excited to the absorbing chain, and provide a theoretical explanation of the nonlinear dynamics governing energy transfer (including energy equi-partition) in this system.  相似文献   

2.
We experimentally study a one-dimensional uncompressed granular chain composed of a finite number of identical spherical elastic beads with Hertzian interactions. The chain is harmonically excited by an amplitude- and frequency-dependent boundary drive at its left end and has a fixed boundary at its right end. Such ordered granular media represent an interesting new class of nonlinear acoustic metamaterials, since they exhibit essentially nonlinear acoustics and have been designated as “sonic vacua” due to the fact that their corresponding speed of sound (as defined in classical acoustics) is zero. This paves the way for essentially nonlinear and energy-dependent acoustics with no counterparts in linear theory. We experimentally detect time-periodic, strongly nonlinear resonances whereby the particles (beads) of the granular chain respond at integer multiples of the excitation period, and which correspond to local peaks of the maximum transmitted force at the chain’s right, fixed end. In between these resonances we detect a local minimum of the maximum transmitted forces corresponding to an anti-resonance in the stationary-state dynamics. The experimental results of this work confirm previous theoretical predictions, and verify the existence of strongly nonlinear resonance responses in a system with a complete absence of any linear spectrum; as such, the experimentally detected nonlinear resonance spectrum is passively tunable with energy and sensitive to dissipative effects such as internal structural damping in the beads, and friction or plasticity effects. We compare the experimental results with direct numerical simulations of the granular network and deduce satisfactory agreement.  相似文献   

3.
We study standing waves (nonlinear normal modes—NNMs) and band zones in finite granular chains composed of spherical granular beads in Hertzian contact, with fixed boundary conditions. Although these are homogeneous dynamical systems in the notation of Rosenberg (Adv. Appl. Mech. 9:155–242, 1966), we show that the discontinuous nature of the dynamics leads to interesting effects such as separation between beads, NNMs that appear as traveling waves (these are characterized as pseudo-waves), and localization phenomena. In the limit of infinite extent, we study band zones, i.e., pass and stop bands in the frequency–energy plane of these dynamical systems, and classify the essentially nonlinear responses that occur in these bands. Moreover, we show how the topologies of these bands significantly affect the forced dynamics of these granular media subject to narrowband excitations. This work provides a classification of the coherent (regular) intrinsic dynamics of one-dimensional homogeneous granular chains with no pre-compression, and provides a rigorous theoretical foundation for further systematic study of the dynamics of granular systems, e.g., the effects of disorders or clearances, discrete breathers, nonlinear localized modes, and high-frequency scattering by local disorders. Moreover, it contributes toward the design of granular media as shock protectors, and in the passive mitigation of transmission of unwanted disturbances.  相似文献   

4.
Studying the dynamic elasto-plastic contact behavior of dimer metallic granules, defined as contacting beads of either different size or material, is important for understanding the behavior of heterogeneous granular systems such as periodic or multi-phase systems. In this paper, the dynamic contact response of dimer bead pairs was experimentally studied using a split Hopkinson pressure bar apparatus. Two types of dimer combinations were subjected to dynamic loading: dimers with the same bead size but different materials (material dimers), and dimers of the same material but different size (size dimers). Dynamic elasto-plastic contact force-displacement curves, post mortem images of yielded contact area, residual contact deformation, and energy absorption during the impact process were measured in each case. It was found that the dynamic contact behavior of the material dimers is controlled by the material with lower yield strength, and can be well described by existing elasto-plastic contact models. In contrast, the size dimers show a complex deformation process that cannot be described by current theoretical models. It was also seen that the strain rate sensitivity of the material itself affects the dynamic yield process of size dimer pairs, and their radius ratio shows a linear effect on the residual deformation and energy transmitted ratio.  相似文献   

5.
We study analytically and numerically primary pulse transmission in one dimensional systems of identical linearly elastic non-dispersive rods separated by identical homogeneous granular layers composed of n beads. The beads interact elastically through a strongly (essentially) nonlinear Hertzian contact law. The main challenge in studying pulse transmission in such strongly nonlinear media is to analyze the ‘basic problem’, namely, the dynamical response of a single intermediate granular layer, confined from both ends by barely touching linear elastic rods subject to impulsive excitation of the left rod. The analysis of the basic problem is carried out under two basic assumptions; namely, of sufficiently small duration of the shock excitation applied to the first layer of the system, and of sufficiently small mass of each bead in the granular interface compared to the mass of each rod. In fact, the smallness of the mass of the bead defines the small parameter in the asymptotic analysis of this problem. Both assumptions are reasonable from the point of view of practical applications. In the analysis we focus only in primary pulse propagation, by neglecting secondary pulse reflections caused by wave scattering at each granular interface and considering only the transmission of the main (primary) pulse across the interface to the neighboring elastic rod. Two types of shock excitations are considered. The first corresponds to fixed time duration (but still much smaller compared to the characteristic time of pulse propagation through the length of each rod), whereas the second type corresponds to a pulse duration that depends on the small parameter of the problem. The influence of the number of beads of the granular interface on the primary wave transmission is studied, and it is shown that at granular interfaces with a relatively low number of beads fast time scale oscillations are excited with increasing amplitudes with increasing number of beads. For a larger number of beads, primary pulse transmission is by means of solitary wave trains resulting from the dispersion of the original shock pulse; in that case fast oscillations result due to interference phenomena caused by the scattering of the main pulse at the boundary of the interface. Considering a periodic system of rods we demonstrate significant reduction of the primary pulse when transmitted through a sequence of granular interfaces. This result highlights the efficacy of applying granular interfaces for passive shock mitigation in layered elastic media.  相似文献   

6.
This paper describes the coupling mechanism between highly nonlinear solitary waves propagating along a granular system and slender beams in contact with the granular medium. Nonlinear solitary waves are compact non-dispersive waves that can form and travel in nonlinear systems such as one-dimensional chains of particles, where they are conventionally generated by the mechanical impact of a striker. These waves have a constant spatial wavelength and their speed, amplitude, and duration can be tuned by modifying the particles’ material or size, or the velocity of the striker. In the study presented in this article we investigated numerically the interaction between solitary waves propagating along a chain of granular particles and a slender beam. Some of the numerical findings were validated experimentally. We found that the geometric and mechanical properties of the beam or thermal stress applied to the beam alter certain features of the solitary waves. In the future, these findings may be used to develop a novel sensing system for the nondestructive assessment of beams.  相似文献   

7.
Elastic solitary waves resulting from Hertzian contact in one-dimensional (1-D) granular chains have demonstrated promising properties for wave tailoring such as amplitude-dependent wave speed and acoustic band gap zones. However, as load increases, plasticity or other material nonlinearities significantly affect the contact behavior between particles and hence alter the elastic solitary wave formation. This restricts the possible exploitation of solitary wave properties to relatively low load levels (up to a few hundred Newtons). In this work, a method, which we term preconditioning, based on contact pre-yielding is implemented to increase the contact force elastic limit of metallic beads in contact and consequently enhance the ability of 1-D granular chains to sustain high-amplitude elastic solitary waves. Theoretical analyses of single particle deformation and of wave propagation in a 1-D chain under different preconditioning levels are presented, while a complementary experimental setup was developed to demonstrate such behavior in practice. The experimental results show that 1-D granular chains with preconditioned beads can sustain high amplitude (up to several kN peak force) solitary waves. The solitary wave speed is affected by both the wave amplitude and the preconditioning level, while the wave spatial wavelength is still close to 5 times the preconditioned bead size. Comparison between the theoretical and experimental results shows that the current theory can capture the effect of preconditioning level on the solitary wave speed.  相似文献   

8.
We study the interaction of propagating wavetrains in a one-dimensional chain of coupled linear damped oscillators with a strongly nonlinear, lightweight, dissipative local attachment which acts, in essence, as nonlinear energy sink—NES. Both symmetric and highly un-symmetric NES configurations are considered, labelled S-NES and U-NES, respectively, with strong (in fact, non-linearizable or nearly non-linearizable) stiffness nonlinearity. Especially for the case of U-NES we show that it is capable of effectively arresting incoming slowly modulated pulses with a single fast frequency by scattering the energy of the pulse to a range of frequencies, by locally dissipating a major portion of the incoming energy, and then by backscattering residual waves upstream. As a result, the wave transmission past the location of the NES is minimized, and the NES acts, in effect, as passive wave arrestor and reflector. Analytical reduced-order modeling of the dynamics is performed through complexification/averaging. In addition, governing nonlinear dynamics is studied computationally and compared to the analytical predictions. Results from the reduced order model recover the exact computational simulations.  相似文献   

9.
We study the stress wave propagation in curved chains of particles (granular crystals) confined by bent elastic guides. We report the frequency- and amplitude-dependent filtering of transmitted waves in relation to various impact conditions and geometrical configurations. The granular crystals studied consist of alternating cylindrical and spherical particles pre-compressed with variable static loads. First, we excite the granular crystals with small-amplitude, broadband perturbations using a piezoelectric actuator to generate oscillatory elastic waves. We find that the linear frequency spectrum of the transmitted waves creates pass- and stop-bands in agreement with the theoretical dispersion relation, demonstrating the frequency-dependent filtering of input excitations through the diatomic granular crystals. Next, we excite high-amplitude nonlinear pulses in the crystals using striker impacts. Experimental tests verify the formation and propagation of highly nonlinear solitary waves that exhibit amplitude-dependent attenuation. We show that the wave propagation can be easily tuned by manipulating the pre-compression imposed to the chain or by varying the initial curvature of the granular chains. We use a combined discrete element (DE) and finite element (FE) numerical model to simulate the propagation of both dispersive linear waves and compactly-supported highly nonlinear waves. We find that the tunable, frequency- and amplitude-dependent filtering of the incoming signals results from the close interplay between the granular particles and the soft elastic media. The findings in this study suggest that hybrid structures composed of granular particles and linear elastic media can be employed as new passive acoustic filtering materials that selectively transmit or mitigate excitations in a desired range of frequencies and amplitudes.  相似文献   

10.
一维颗粒链的一端受到一个有初速度颗粒的撞击,导致颗粒连中产生稳定传播的应力波——高度非线性孤立波,该应力波的波长、波速以及幅值都能保持很好的稳定性,且遇到边界才会反射.孤立波是一种良好的信息载体,广泛应用于无损检测技术中.基于孤立波的特性,研究高度非线性孤立波与弹性大板耦合作用,基于赫兹定律和板的内在非弹性理论,推导出晶体链与大板的耦合微分方程组.用龙格库塔法求解该微分方程组,得到颗粒链中各颗粒的位移、速度曲线.通过分析回弹波出现的时间、回弹波所携带的能量以及模量、厚度、重力等对孤立波的影响,发现反射孤立波对大板的弹性模量和厚度尤为敏感,此外,颗粒链的摆放对整个耦合过程也有影响.研究的结果为孤立波对结构体的无损探伤提供了理论依据,该技术可实现对结构体的快速检查和可控性研究.  相似文献   

11.
Present work concerns the propagation of solitary waves in the array of coupled, uncompressed granular chains subjected to onsite perturbation. We devise a special analytical procedure depicting the modulation of solitary pulses caused by the inter-chain interaction as well as by the on-site perturbations of a general type. The proposed analytical procedure is very efficient in depicting both the transient response characterized by significant energy fluctuations between the chains as well as in predicting the formation of stable attractors corresponding to a steady state response. We confirm the validity of a general analytical procedure with several specific setups of granular scalar models. In particular we consider the response of the array of coupled granular chains free of perturbation as well as the arrays subject to the basic type of on-site perturbations such as the ones induced by the uniform and random elastic foundation, dissipation. Additional interesting finding made in the present study corresponds to the granular arrays subject to a special type of on-site perturbation containing the terms leading to the two opposing effects namely dissipation and energy sourcing. Interestingly enough this type of perturbation may lead to the formation of stable attractors. By the term attractors we refer to the stable, stationary pulses simultaneously forming on all the coupled chains and propagating with the same phase speed. It is important to emphasize that the analytical procedure developed in the first part of the study predicts the formation of stable attractors through a typical saddle–node bifurcation. Moreover, results of the reduced model are found to be in a spectacular agreement with those of the direct numerical simulations of the true model.  相似文献   

12.
The nonlinear dynamics of a hybrid Rayleigh–Van der Pol–Duffing oscillator includes pure and impure quadratic damping are investigated. The multiple timescales method is used to study exhaustively various resonances states. It is noticed that the system presents nine resonances states. The frequency response curves of quintic, third and second superharmonic, and subharmonic resonances states are obtained. Bistability, hysteresis, and jump phenomenon are also obtained. It is pointed out that these resonance phenomena are strongly related to the nonlinear cubic and quadratic damping and to the external force. The numerical simulations are used to make bifurcation sequences displayed by the model for each type of oscillatory. It is noticed that the pure quadratic, impure cubic damping, and external excitation affect regular and chaotic states.  相似文献   

13.
We investigate the reflection of highly nonlinear solitary waves in one-dimensional granular crystals interacting with large plates. We observe significant changes in the reflected waves’ properties in terms of wave amplitude and time of flight in association with the intrinsic inelasticity of large plates, which are governed by the plate thickness and the size of the granular constituents. We also study the effects of fixed plate boundaries in the formation of reflected waves, and find the existence of a critical distance, within which the interaction between the granular chain and plate is strongly modified. We explain the effects of intrinsic inelasticity and of boundaries in the large plates by using plate theory and the contact mechanics between a plate and a spherical striker. We find that experimental results are in excellent agreement with the analytical predictions and numerical simulations based on the combined discrete element and spectral element models. The findings in this study can be useful for the nondestructive evaluation of plate structures using granular crystals, which can improve the resolution of in-situ, portable measurement instruments leveraging high acoustic energy and sensitivity of solitary waves.  相似文献   

14.
The steady-state and transient shear flow dynamics of polymer drops in a microchannel are investigated using the dissipative particle dynamics (DPD) method. The polymer drop is made up of 10% DPD solvent particles and 90% finite extensible non-linear elastic (FENE) bead spring chains, with each chain consisting of 16 beads. The channel’s upper and lower walls are made up of three layers of DPD particles, respectively, perpendicular to Z-axis, and moving in opposite directions to generate the shear flow field. Periodic boundary conditions are implemented in the X and Y directions. With FENE chains, shear thinning and normal stress difference effects are observed. The “colour” method is employed to model immiscible fluids according to Rothman–Keller method; the χ-parameters in Flory–Huggins-type models are also analysed accordingly. The interfacial tension is computed using the Irving–Kirkwood equation. For polymer drops in a steady-state shear field, the relationship between the deformation parameter (Ddef) and the capillary number (Ca) can be delineated into a linear and nonlinear regime, in qualitative agreement with experimental results of Guido et al. [J. Rheol. 42 (2) (1998) 395]. In the present study, Ca<0.22, in the linear regime. As the shear rate increases further, the drop elongates; a sufficiently deformed drop will break up; and a possible coalescence may occur for two neighbouring drops. Dynamical equilibrium between break-up and coalescence results in a steady-state average droplet-size distribution. In a shear reversal flow, an elongated and oriented polymer drop retracts towards a roughly spherical shape, with a decrease in the first normal stress difference. The polymer drop is found to undergo a tumbling mode at high Schmidt numbers. A stress analysis shows that the stress response is different from that of a suspension of solid spheres. An overshoot in the strain is observed for the polymer drop under extension due to the memory of the FENE chains.  相似文献   

15.
We study the dynamic interactions between traveling waves propagating in a linear lattice and a lightweight, essentially nonlinear and damped local attachment. Correct to leading order, we reduce the dynamics to a strongly nonlinear damped oscillator forced by two harmonic terms. One of the excitation frequencies is characteristic of the traveling wave that impedes to the attachment, whereas the other accounts for local lattice dynamics. These two frequencies are energy-independent; a third energy-dependent frequency is present in the problem, characterizing the nonlinear oscillation of the attachment when forced by the traveling wave. We study this three-frequency strongly nonlinear problem through slow-fast partitions of the dynamics and resort to action-angle coordinates and Melnikov analysis. For damping below a critical threshold, we prove the existence of relaxation oscillations of the attachment; these oscillations are associated with enhanced targeted energy transfer from the traveling wave to the attachment. Moreover, in the limit of weak or no damping, we prove the existence of subharmonic oscillations of arbitrarily large periods, and of chaotic motions. The analytical results are supported by numerical simulations of the reduced order model.  相似文献   

16.
In the present study an experimental investigation of heat transport and water infiltration in granular packed bed (unsaturated porous media) due to supplied water flux is carried out. The study is focus on the one-dimensional flow in a vertical granular packed bed column assuming local thermal equilibrium between water and particles at any specific space. This experimental study described the dynamics of heat transport and water infiltration in various testing condition. Experimentally, the influences of particle sizes, supplied water flux and supplied water temperature on heat transport and water infiltration during unsaturated flow are clarified in details. The results showed that the granular packed bed with larger particle size results in faster infiltration rate and form a wider infiltration depth. Furthermore, the increase of the supplied water flux and supplied water temperature corresponds to faster infiltration rate, but the results not linearly related to the interference between the heat transport and hydrodynamics characteristics in granular packed bed.  相似文献   

17.
18.
We study the dynamics of capture into, or escape from, resonance in a strongly nonlinear oscillator with weak damping and forcing, using harmonic balance based averaging (HBBA). This system provides the simplest example of resonance capture that we know of. The HBBA technique, here adapted to tackle nonlinear resonances, provides a harmonic balance assisted approximation to the underlying, asymptotically correct, averaged dynamics. Allowing the harmonic balance approximation makes a variety of systems analytically tractable which might otherwise be intractable. The evolution equations for amplitude and phase of oscillations are derived first. Restricting attention near the primary resonance, the slow flow equations are approximately averaged. The resulting flow transparently shows the stable and unstable primary resonant solutions, as well as the trajectories that get captured into resonance and the ones that escape. Good agreement with numerics is obtained, showing the utility of HBBA near resonance manifolds.  相似文献   

19.
A non-uniform current, such as may be generated by long internal waves, interacts with short surface waves and causes patterns on the sea surface that are of interest. In particular, regions of steep breaking waves may be relevant to specular radar scattering.A simple approach to modelling this problem is to take a set of short, surface waves of uniform wavenumber on the sea surface, as may be caused by a gust of wind. The direction of propagation of the surface waves is firstly taken to be the same as that of the current, and surface tension and viscous effects are neglected. We have a number of methods of solution at our disposal: linear (one-dimensional) ray theory is simple to apply to the problem, a nonlinear Schrödinger equation for the modulated wave amplitude, modified to include to effect of the current, can be used and solutions can be found using a fully nonlinear irrotational flow solver. Comparisons between the ‘exact’ nonlinear calculations for two dimensions (which are too complicated/ computationally intensive to be extended to three dimensions) compare well with the two approximate methods of solution, both of which can be extended, within their limitations, to model the full three-dimensional problem; here we present three-dimensional results from the linear ray theory.By choosing such a simple (although we consider physically realistic) initial state of uniform wavenumber short waves and assuming a sinusoidal surface current, we can reduce the two-dimensional problem to dependence on three non-dimensional parameters.In three-dimensions, we consider an initial condition with a uniform wavetrain at an angle α say, to the propagating current, thus introducing a fourth parameter into the problem. Extension of the linear ray theory from one space to two space dimensions is numerically quite simple since we maintain uniformity in the direction perpendicular to the current, and the only difficulty lies with the presentation of results, due to the large number of variables now present in the problem such as initial wavenumber, angle of propagation, position in (x, y, t) space etc. In this paper we present just one solution in detail where waves are strongly refracted and form two distinct foci in space-time. There is a collimation of the short waves with the direction of the propagating current.  相似文献   

20.
Summary The dynamics of one-dimensional two-component shear motion in elastic-isotropic homogeneous media is studied assuming isentropic finite displacements. Wave breaking of initially continuous waves on the infinite interval is discussed for weakly nonlinear waves.The problem of a resonating finite-thickness shear layer in primary resonance for single-component motion exhibits jump discontinuities of particle velocity, shear strain and stress in a finite frequency band near primary resonance.Under certain conditions two-component motion can be reduced to a quasi-single-component motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号