首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
龙桂鲁  刘洋 《物理学进展》2011,28(4):410-431
我们综述最近提出的广义量子干涉原理及其在量子计算中的应用。广义量子干涉原理是对狄拉克单光子干涉原理的具体化和多光子推广,不但对像原子这样的紧致的量子力学体系适用,而且适用于几个独立的光子这样的松散量子体系。利用广义量子干涉原理,许多引起争议的问题都可以得到合理的解释,例如两个以上的单光子的干涉等问题。从广义量子干涉原理来看双光子或者多光子的干涉就是双光子和双光子自身的干涉,多光子和多光子自身的干涉。广义量子干涉原理可以利用多组分量子力学体系的广义Feynman积分表示,可以定量地计算。基于这个原理我们提出了一种新的计算机,波粒二象计算机,又称为对偶计算机。在原理上对偶计算机超越了经典的计算机和现有的量子计算机。在对偶计算机中,计算机的波函数被分成若干个子波并使其通过不同的路径,在这些路径上进行不同的量子计算门操作,而后这些子波重新合并产生干涉从而给出计算结果。除了量子计算机具有的量子平行性外,对偶计算机还具有对偶平行性。形象地说,对偶计算机是一台通过多狭缝的运动着的量子计算机,在不同的狭缝进行不同的量子操作,实现对偶平行性。目前已经建立起严格的对偶量子计算机的数学理论,为今后的进一步发展打下了基础。本文着重从物理的角度去综述广义量子干涉原理和对偶计算机。现在的研究已经证明,一台d狭缝的n比特的对偶计算机等同与一个n比特+一个d比特(qudit)的普通量子计算机,证明了对偶计算机具有比量子计算机更强大的能力。这样,我们可以使用一台具有n+log2d个比特的普通量子计算机去模拟一个d狭缝的n比特对偶计算机,省去了研制运动量子计算机的巨大的技术上的障碍。我们把这种量子计算机的运行模式称为对偶计算模式,或简称为对偶模式。利用这一联系反过来可以帮助我们理解广义量子干涉原理,因为在量子计算机中一切计算都是普通的量子力学所允许的量子操作,因此广义量子干涉原理就是普通的量子力学体系所允许的原理,而这个原理只是是在多体量子力学体系中才会表现出来。对偶计算机是一种新式的计算机,里面有许多问题期待研究和发展,同时也充满了机会。在对偶计算机中,除了幺正操作外,还可以允许非幺正操作,几乎包括我们可以想到的任何操作,我们称之为对偶门操作或者广义量子门操作。目前这已经引起了数学家的注意,并给出了广义量子门操作的一些数学性质。此外,利用量子计算机和对偶计算机的联系,可以将许多经典计算机的算法移植到量子计算机中,经过改造成为量子算法。由于对偶计算机中的演化是非幺正的,对偶量子计算机将可能在开放量子力学的体系的研究中起到重要的作用。  相似文献   

2.
3.
General Quantum Interference Principle and Duality Computer   总被引:2,自引:0,他引:2  
In this article, we propose a general principle of quantum interference for quantum system, and based on this we propose a new type of computing machine, the duality computer, that may outperform in principle both classical computer and the quantum computer. According to the general principle of quantum interference, the very essence of quantum interference is the interference of the sub-waves of the quantum system itself. A quantum system considered here can be any quantum system: a single microscopic particle, a composite quantum system such as an atom or a molecule, or a loose collection of a few quantum objects such as two independent photons. In the duality computer, the wave of the duality computer is split into several sub-waves and they pass through different routes, where different computing gate operations are performed. These sub-waves are then re-combined to interfere to give the computational results. The quantum computer, however, has only used the particle nature of quantum object. In a duality computer, it may be possible to find a marked item from an unsorted database using only a single query, and all NP-complete problems may have polynomial algorithms. Two proof-of-the-principle designs of the duality computer are presented: the giant molecule scheme and the nonlinear quantum optics scheme. We also propose thought experiment to check the related fundamental issues, the measurement efficiency of a partial wave function.  相似文献   

4.
In this paper, we give the most general duality gates, or generalized quantum gates in duality quantum computers. Here we show by explicit construction that a n-bit duality quantum computer with d slits can be simulated perfectly with an ordinary quantum computer with n qubits and one auxiliary qudit. Using this model, we give the most general form of duality gates which is of the form ∑i=0^d-1piUi,and the pi 's are complex numbers with module less or equal to 1 and constrained by|∑iPi|≤1.  相似文献   

5.
6.
Fan Wen 《Physica A》2011,390(21-22):3855-3869
The spectrum of fully developed wind waves is studied by application of the method of quantum statistics. A particle picture of water waves is introduced as an analogy of wave–particle duality. “Water wave particles” are conceived which are similar to phonons for elastic waves in solids. However, due to the property of wave breaking, the number of “water wave particles” in a quantum state is restricted. The spectrum of fully developed wind waves is studied on the basis of the maximum entropy principle. The similarity law of fully developed wind wave spectrum is proved. In the high frequency range, the spectral form is in agreement with the result of observations. In the particle picture, a saturated spectrum is introduced which is in conceptual consistency with the saturated spectrum introduced by Phillips in the wave picture, and the form of which is the same as Phillips’. It is further shown that in the high frequency range the spectrum is only half saturated for fully developed wind waves. The frequency downshifting phenomenon which cannot be explained by wave theory is explained in the particle picture.  相似文献   

7.
8.
The wave-particle duality, as a manifestation of Bohr’s complementarity, is usually quantified in terms of path predictability and interference visibility. Various characterizations of the wave-particle duality have been proposed from an operational perspective, most of them are in forms of inequalities, and some of them are expressed in forms of equalities by incorporating entanglement or coherence. In this work, we shed different insights into the nature of the wave-particle duality by casting it into a form of information conservation in a multi-path interferometer, with uncertainty as a unified theme. More specifically, by employing the simple yet fundamental concept of variance, we establish a resolution of unity, which can be interpreted as a complementarity relation among wave feature, particle feature, and mixedness of a quantum state. This refines or reinterprets some conventional approaches to wave-particle duality, and highlights informational aspects of the issue. The key idea of our approach lies in that a quantum state, as a Hermitian operator, can also be naturally regarded as an observable, with measurement uncertainty (in a state) and state uncertainty (in a measurement) being exploited to quantify particle feature and wave feature of a quantum state, respectively. These two kinds of uncertainties, although both are defined via variance, have fundamentally different properties and capture different features of a state. Together with the mixedness, which is a kind of uncertainty intrinsic to a quantum state, they add up to unity, and thus lead to a characterization of the wave-particle-mixedness complementarity. This triality relation is further illustrated by examples and compared with some popular wave-particle duality or triality relations.  相似文献   

9.
In this letter, we propose a duality computing mode, which resembles particle-wave duality property when a quantum system such as a quantum computer passes through a double-slit. In this mode, computing operations are not necessarily unitary. The duality mode provides a natural link between classical computing and quantum computing. In addition, the duality mode provides a new tool for quantum algorithm design.  相似文献   

10.
We address the question of which phase space functionals might represent a quantum state. We derive necessary and sufficient conditions for both pure and mixed phase space quantum states. From the pure state quantum condition we obtain a formula for the momentum correlations of arbitrary order and derive explicit expressions for the wave functions in terms of time-dependent and independent Wigner functions. We show that the pure state quantum condition is preserved by the Moyal (but not by the classical Liouville) time evolution and is consistent with a generic stargenvalue equation. As a by-product Baker's converse construction is generalized both to an arbitrary stargenvalue equation, associated to a generic phase space symbol, as well as to the time-dependent case. These results are properly extended to the mixed state quantum condition, which is proved to imply the Heisenberg uncertainty relations. Globally, this formalism yields the complete characterization of the kinematical structure of Wigner quantum mechanics. The previous results are then succinctly generalized for various quasi-distributions. Finally, the formalism is illustrated through the simple examples of the harmonic oscillator and the free Gaussian wave packet. As a by-product, we obtain in the former example an integral representation of the Hermite polynomials.  相似文献   

11.
《Physics letters. A》2020,384(22):126538
We establish the link between minimum-error discrimination of two pure states and wave particle duality in two-path interferometers. In particular, the upper bound of the probability of success discrimination is derived directly from the corresponding duality relation. It is already known that quantum state discrimination can produce wave particle duality relations, here we show the converse is also true: Wave particle duality can be used to obtain information about state discrimination.  相似文献   

12.
我们综述最近提出的广义量子干涉原理及其在量子计算中的应用.广义量子干涉原理是对狄拉克单光子干涉原理的具体化和多光子推广,不但对像原子这样的紧致的量子力学体系适用,而且适用于几个独立的光子这样的松散量子体系.利用广义量子干涉原理,许多引起争议的问题都可以得到合理的解释,例如两个以上的单光子的干涉等问题.从广义量子干涉原理来看双光子或者多光子的干涉就是双光子和双光子自身的干涉,多光子和多光子自身的干涉.广义量子干涉原理可以利用多组分量子力学体系的广义Feynman积分表示,可以定量地计算.基于这个原理我们提出了一种新的计算机,波粒二象计算机,又称为对偶计算机.在原理上对偶计算机超越了经典的计算机和现有的量子计算机.在对偶计算机中,计算机的波函数被分成若干个子波并使其通过不同的路径,在这些路径上进行不同的量子计算门操作,而后这些子波重新合并产生干涉从而给出计算结果.除了量子计算机具有的量子平行性外,对偶计算机还具有对偶平行性.形象地说,对偶计算机是一台通过多狭缝的运动着的量子计算机,在不同的狭缝进行不同的量子操作,实现对偶平行性.目前已经建立起严格的对偶量子计算机的数学理论,为今后的进一步发展打下了基础.本文着重从物理的角度去综述广义量子干涉原理和对偶计算机.现在的研究已经证明,一台d狭缝的n比特的对偶计算机等同与一个n比特+一个d比特(qudit)的普通量子计算机,证明了对偶计算机具有比量子计算机更强大的能力.这样,我们可以使用一台具有n+log<,2>d个比特的普通量子计算机去模拟一个d狭缝的n比特对偶计算机,省去了研制运动量子计算机的巨大的技术上的障碍.我们把这种量子计算机的运行模式称为对偶计算模式,或简称为对偶模式.利用这一联系反过来可以帮助我们理解广义量子干涉原理,因为在量子计算机中一切计算都是普通的量子力学所允许的量子操作,因此广义量子干涉原理就是普通的量子力学体系所允许的原理,而这个原理只是是在多体量子力学体系中才会表现出来.对偶计算机是一种新式的计算机,里面有许多问题期待研究和发展,同时也充满了机会.在对偶计算机中,除了幺正操作外.还可以允许非幺正操作,几乎包括我们可以想到的任何操作,我们称之为对偶门操作或者广义量子门操作.目前这已经引起了数学家的注意,并给出了广义量子门操作的一些数学性质.此外,利用量子计算机和对偶计算机的联系,可以将许多经典计算机的算法移植到量子计算机中,经过改造成为量子算法.由于对偶计算机中的演化是非幺正的,对偶量子计算机将可能在开放量子力学的体系的研究中起到重要的作用.  相似文献   

13.
Duality Quantum Computers and Quantum Operations   总被引:1,自引:0,他引:1  
We present a mathematical theory for a new type of quantum computer called a duality quantum computer that is similar to one that has recently been proposed. We discuss the nonunitarity of certain circuits of a duality quantum computer. We then discuss the relevance of this work to quantum operations and their convexity theory. This discussion is based upon isomorphism theorems for completely positive maps.  相似文献   

14.
Coherent control is based on optical manipulation of the amplitudes and phases of wave functions. It is expected to be a key technique to develop novel quantum technologies such as bond-selective chemistry and quantum computing, and to better understand the quantum worldview founded on wave-particle duality. We have developed high-precision coherent control by imprinting optical amplitudes and phases of ultrashort laser pulses on the quantum amplitudes and phases of molecular wave functions. The history and perspective of coherent control and our recent achievements are described.  相似文献   

15.
Defining the generalized charge, potential, current and generalized fields as complex quantities where real and imaginary parts represent gravitation and electromagnetism respectively, corresponding field equation, equation of motion and other quantum equations are derived in manifestly covariant manner. It has been shown that the field equations are invariant under Lorentz as well as duality transformations. It has been shown that the quaternionic formulation presented here remains invariant under quaternion transformations.  相似文献   

16.
An important and usual sort of search problems is to find all marked states from an unsorted database with a large number of states. Grover's original quantum search algorithm is for finding single marked state with uncertainty, and it has been generalized to the case of multiple marked states, as well as been modified to find single marked state with certainty. However, the query complexity for finding all multiple marked states has not been addressed. We use a generalized Long's algorithm with high precision to solve such a problem. We calculate the approximate query complexity, which increases with the number of marked states and with the precision that we demand. In the end we introduce an algorithm for the problem on a "duality computer" and show its advantage over other algorithms.  相似文献   

17.
The (electromagnetic) generalized Lorenz-Mie theory describes the interaction between an electromagnetic arbitrary shaped beam and a homogeneous sphere. It is a generalization of the Lorenz-Mie theory which deals with the simpler case of a plane wave illumination. In a recent paper, we consider (i) elastic cross-sections in electromagnetic generalized Lorenz-Mie theory and (ii) elastic cross-sections in an associated quantum generalized Lorenz-Mie theory. We demonstrated that the electromagnetic problem is equivalent to a superposition of two effective quantum problems. We now intend to generalize this result from elastic cross-sections to inelastic cross-sections. A prerequisite is to build an asymptotic quantum inelastic generalized Lorenz-Mie theory, which is presented in this paper.  相似文献   

18.
利用计算机代数系统Mathematica.6.0,设计了一个波包模型的仿真实验。该演示实验有助于加深学生对微观粒子的运动特征——波粒二象性的理解。  相似文献   

19.
In this paper, we examine the Dirac monopole in the framework of Off-Shell Electromagnetism, the five-dimensional U(1) gauge theory associated with Stueckelberg–Schrodinger relativistic quantum theory. After reviewing the Dirac model in four dimensions, we show that the structure of the five-dimensional theory prevents a natural generaliza tion of the Dirac monopole, since the theory is not symmetric under duality transforma tions. It is shown that the duality symmetry can be restored by generalizing the electromagnetic field strength to an element of a Clifford algebra. Nevertheless, the generalized framework does not permit us to recover the phenomenological (or conventional) absence of magnetic monopoles.  相似文献   

20.
An important and usual sort of search problems is to find all marked states from an unsorted database with a large number of states. Grover's original quantum search algorithm is for finding single marked state with uncertainty, and it has been generalized to the case of multiple marked states, as well as been modified to find single marked state with certainty. However, the query complexity for finding all multiple marked states has not been addressed. We use a generalized Long's algorithm with high precision to solve such a problem. We calculate the approximate query complexity, which increases with the number of marked states and with the precision that we demand. In the end we introduce an algorithm for the problem on a "duality computer" and show its advantage over other algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号