首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel sulfonated diamine, 4,4′‐bis(4‐amino‐3‐trifluoromethylphenoxy) biphenyl 3,3′‐disulfonic acid (F‐BAPBDS), was successfully synthesized by nucleophilic aromatic substitution of 4,4′‐dihydroxybiphenyl with 2‐chloro‐5‐nitrobenzotrifluoride, followed by reduction and sulfonation. A series of sulfonated polyimides of high molecular weight (SPI‐x, x represents the molar percentage of the sulfonated monomer) were prepared by copolymerization of 1,4,5,8‐naphathlenetetracarboxylic dianhydride (NTDA) with F‐BAPBDS and nonsulfonated diamine. Flexible and tough membranes of high mechanical strength were obtained by solution casting and the electrolyte properties of the polymers were intensively investigated. The copolymer membranes exhibited excellent oxidative stability due to the introducing of the CF3 groups. The SPI membranes displayed desirable proton conductivity (0.52×10−1–0.97×10−1 S·cm−1) and low methanol permeability (less than 2.8×10−7 cm2·s−1). The highest proton conductivity (1.89×10−1 S·cm−1) was obtained for the SPI‐90 membrane at 80°C, with an IEC of 2.12 mequiv/g. This value is higher than that of Nafion 117 (1.7×10−1 S·cm−1). Furthermore, the hydrolytic stability of the obtained SPIs is better than the BDSA and ODADS based SPIs due to the hydrophobic CF3 groups which protect the imide ring from being attacked by water molecules, in spite of its strong electron‐withdrawing behaviors.  相似文献   

2.
Using the technique of molecular modulation spectrometry, we have measured directly the rate constants of several reactions involved in the oxidation of methyl radicals at room temperature: k1 is in the fall-off pressure regime at our experimental pressures (20–760 torr) where the order lies between second and third and we obtain an estimate for the second-orderlimit of (1.2 ± 0.6) × 10?12 cm3/molec · sec, together with third-order rate constants of (3.1 ± 0.8) × 10?31 cm6/molec2 · sec with N2 as third body and (1.5 ± 0.8) × 10?30 with neopentane; we cannot differentiate between k2a and k2c and we conclude k2a + (k2c) = (3.05 ± 0.8) × 10?13 cm3/molec · sec and k2b = (1.6 ± 0.4) × 10?13 cm3/molec · sec; k3 = (6.0 ± 1.0) × 10?11 cm3/molec · sec.  相似文献   

3.
Poly(phenylene vinylene) (PPV) film was synthesized via a soluble precursor poly-mer. Strong fluorescence at 500-600nm was observed in both precursor and PPV film.Room-temperature conductivity of PPV film doped with FeCl_3 depends on the eliminationtemperature, the concentration of FeCl_3 and doping time. The maximum conductivity ofdoped PPV at room-temperature can reach about 40 S·cm~(-1). The temperature depen-dence of conductivity was controlled by 1D-VRH (1 Dimension Variable Range Hopping)model with T_0 value of 3.9×10~3 K. Non-Ohmic conductivity resulting from Schottky effectwas observed and the value of converted voltage from Ohmic region into non-Ohmic regionat the current-voltage characteristic was found to be dependent upon the work function ofelectrodes.  相似文献   

4.
This study prepared a dense Sm‐doped ceria (SDC) and an SDC carbonate composite (abbreviated as SDC‐C). The latter was prepared by immersing porous SDC with a formula of (Ce0.8Sm0.2)O1.9 and a relative density of approximately 65‐70% into a molten mixture of carbonates containing 1:1 molar ratio of Li2CO3 and Na2CO3 at 500 °C. The relative density of the SDC‐C was close to 100%. In addition, SDC oxide without carbonates, which also has a relative density of close to 100%, was heat treated at 1600 °C. At 500 °C, the electrical conductivity and ionic transference number (ti) of the SDC oxide were 1.79(5) × 10?3 S·cm?1 and 0.99(2), respectively, such that electronic conduction could be disregarded. Increasing the temperature caused a gradual decrease in the ti of SDC. Following the addition of carbonates to SDC, the electrical conductivity reached 1.23(9) × 10?1 S·cm?1 at 500 °C. After 14 days (340 h), the electrical conductivity of the SDC‐C at 490 °C, leveled off at about 6 × 10?2 S·cm?1. SDC‐C could be used as a potential electrolyte in solid oxide fuel cells (SOFCs) at temperatures below 500 °C.  相似文献   

5.
Novel nonlinear optical (NLO) chromophore, 2-{3-[2-(4-methylsulfonylphenyl)vinyl]carbazol-9-yl}ethanol was synthesized and subsequently reacted with methacryloyl chloride to give a photoconducting NLO monomer ( M1 ). 2-Methylacrylic acid 2-[3-(diphenylhydrazonomethyl)carbazol-9-yl]ethyl ester ( M2 ) was also synthesized as a comonomer to enhance the carrier mobility of the NLO polymer. Photoconducting NLO polymers, P1 and P2 were obtained by the copolymerization of Ml with methyl methacrylate and M2 , respectively. These polymers were well soluble in organic solvents and showed glass transition at 177 °C and 196 °C, respectively. Polymer films of P1 and P2 were optically clear, and were transparent at wavelengths longer than 420 nm. The electro-optic coefficient (r33) of poled P1 films was measured to be ∼5 pm/V at 632.8 nm. The photoconductive sensitivities of P1 and P2 were 6.2 × 10−14 S·cm−1/mW·cm−2 and 5.6 × 10−11 S·cm−1/mW·cm−2.  相似文献   

6.
The kinetics of the reversible reaction have been studied spectrophotometrically in acid solution under conditions in which both the forward and reverse reactions go to virtual completionand in which the reaction comes to a practical equlibrium. The rates of theforward (Rf) and reverse (Rr) reactions are given by where f, g, h, u, and v have the values (4 ± 1) × 10?5 mole/1.·s, (4.2 ± 0.2) × 10?5 mole2/1.2·s, (5.0 · 0.3) × 10?7 mole3/1.3·s, (1.1 ± 0.1) × 10?3 1.2/mole2·s, and (3.7 ± 0.2) × 10?3 1.3/mole3·s at 298.2°K and at an ionic strength of 2.00M maintained by adding sodium chloride. The stoichiometric equilibrium constant under similar conditions is 0.022 ± 0.003. Differentvalues of these parameters were obtained when sodium perchlorate and sodiumnitrate were used to control ionic strength. The results are compared with those from previous reports and a mechanism is proposed based upon an initial rapid equilibrium followed by a rate-determining attack of water upon H3AsO3I+, H2AsO3I, and HAsO3I?.  相似文献   

7.
多金属氧酸盐四硫富瓦烯衍生物荷移盐超薄导电膜(英)   总被引:2,自引:0,他引:2  
0IntroductionThecharge鄄transfer(CT)saltsbasedplanarπ鄄electrondonorETasaclassofmolecule鄄basedmate鄄rialshavebeenstudiedextensivelyinthepasttwentyyears,becauseoftheirmetallicconductivityandevensuperconductivity[1~6].Inrecentyears,polyoxometalateshaveatt  相似文献   

8.
李昕  吴丽平  郭元茹 《无机化学学报》2006,22(10):1911-1915
过渡金属氮化物因其具有共价固体、离子晶体和过渡金属的综合特性,从而表现出特殊的物理性质和化学性质[1],并具有导电性好,键合强度大、硬度和熔点高等特点,因此比传统的铜、铝及其合金更适合制备电子器件[2,3]。此外其电磁特征类似金属,导电率、霍尔系数、磁化率和热熔都属于金属范围,是一种应用前景良好的导电材料[4 ̄6]和电极材料[7]。传统的合成方法主要采用金属卤化物、氢化物与氮、氨反应或者金属和氮反应获得相应的金属氮化物[2,8]。在已有的合成方法中,均存在反应时间长,产物中常伴有M o2N、γ鄄M o2N等杂相,不利于应用。稀土气…  相似文献   

9.
The kinetics of the oxidation of iodide by hydrogen peroxide catalyzed by acidic molybdate have been studied by a spectrophotometric stopped-flow method. The results are interpreted in terms of the mechanism and the implied rate law where [mol] is total analytical concentration of molybdate. The values obtained for the rate and equilibrium constants are k4 = (3.3 ± 1) × 102 1./mole · s, K1 = (1.2 ± 0.6) × 104 1./mole, K2 = (1.3 ± 0.7) × 103 1./mole, and K3 = (4 ± 3) × 102 1./mole at 298°K.  相似文献   

10.
The preparation and characterization of blended solid polymer electrolyte 49% poly(methyl methacrylate)-grafted natural rubber (MG49):poly(methyl methacrylate) (PMMA) (30:70) were carried out. The effect of lithium tetrafluoroborate (LiBF4) concentration on the chemical interaction, structure, morphology, and room temperature conductivity of the electrolyte were investigated. The electrolyte samples with various weight percentages (wt.%) of LiBF4 salt were prepared by solution casting technique and characterized by Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy. Infrared analysis demonstrated that the interaction between lithium ions and oxygen atoms occurred at symmetrical stretching of carbonyl (C=O) (1,735 cm?1) and asymmetric deformation of (O–CH3) (1,456 cm?1) via the formation of coordinate bond on MMA structure in MG49 and PMMA. The reduction of MMA peaks intensity at the diffraction angle, 2θ of 29.5° and 39.5° was due to the increase in weight percent of LiBF4. The complexation occurred between the salt and polymer host had been confirmed by the XRD analysis. The semi-crystalline phase of polymer host was found to reduce with the increase in salt content and confirmed by XRD analysis. Morphological studies by SEM showed that MG49 blended with PMMA was compatible. The addition of salt into the blend has changed the topological order of the polymer host from dark surface to brighter surface. The SEM analyses supported the enhancement of conductivity with the addition of salt. The conductivity increased drastically from 2.0 to 3.4?×?10?5 S cm?1 with the addition of 25 wt.% of salt. The increase in the conductivity was due to the increasing of the number of charge carriers in the electrolyte. The conductivity obeys Arrhenius equation in higher temperature region from 333 to 373 K with the pre-exponential factor σ o of 1.21?×?10?7 S cm?1 and the activation energy E a of 0.46 eV. The conductivity is not Arrhenian in lower temperature region from 303 to 323 K.  相似文献   

11.
New conductive glass with a composition of 20BaO·10Fe2O3·xWO3·(70 ? x)V2O5 (x = 10–50) was investigated by means of Mössbauer spectroscopy. A marked decrease in quadrupole splitting (Δ) was observed after the isothermal annealing at 500 °C for 1,000 min, due to the structural relaxation of 3D-network composed of FeO4, VO4, and VO5 units. After the isothermal annealing, a marked increase in the electrical conductivity (σ) was observed from 1.7 × 10?5 to 1.0 × 10?1 S cm?1 when “x” was 10, whereas comparable σ values of 1.1 × 10?4 and 2.0 × 10?4 S cm?1 were observed when “x” was 40. These results evidently show that structural relaxation of 3D-network structure involved with a marked increase in σ is intrinsic of “vanadate glass”. XRD pattern indicated several weak peaks due to needle-like BaFe2O4 and α-Fe2O3 when the glass sample with “x” of 20 was annealed at 500 °C for 1,000 min. SEM study proved the formation of needle-like BaFe2O4 just on the surface of the sample, whereas hexagonal BaFe12O19 were observed in the annealed sample with “x” of 40. Chemical durability of WO3-containing vanadate glass was investigated by immersing each glass sample into 20 %-HCl solution for 72 h.  相似文献   

12.
The reaction between C2H5 and O2 at 295 K has been studied with a flow reactor sampled by a mass spectrometer. With helium as the carrier gas the rate coefficient was found to increase from (1.2 ± 0.3) × 10?12 to (3.6 ± 0.9) × 10?12 cm3/s as [He] was increased from 2 × 1016 to 3.4 × 1017 cm?3. The importance of has been determined from a knowledge of the initial C2H5 concentration together with a measurement of the C2H4 produced in reaction (5). F, the fraction of the C2H5 radicals removed by path (5), was found to decrease from 0.15 to 0.06 as [He] increased from 2 × 1016 to 3.4 × 1017 cm?3. The rate coefficient for reaction (5) was found to be independent of [He] and to have a value of (2.1 ± 0.5) × 10?13 cm3/s. The variation in F reflects the fact that k1b increases as [He] increases. These observations are taken as evidence for a direct mechanism for C2H4 production and a collision-stabilized route for C2H5O2 formation. Calculations indicate that the high-pressure limit for reaction (1b) is ~4.4 × 10?12 cm3/s and that in the polluted troposphere the branching ratio for reactions (1b) and (5) will be ~l20.  相似文献   

13.
Rate constants for the reaction O(3P) + SO2 + M have been determined over the temperature range of 299°–440°K, using a flash photolysis–NO2 chemiluminescence technique. For M?Ar, the Arrhenius expression was obtained. At room temperature k2Ar = (1.05 ± 0.21) × 10?33 cm6/molec2·sec. In addition, the rate constants k2 = (1.37 + 0.27) × 10?33 cm6/molec2·sec, k2 = (9.5 ± 3.0) ± 10?33 cm6/molec2·sec, k3 = (1.1 ± 0.2) ± 10?31 cm6/molec2·sec, and k3 = (2.6 ? 0.9) ± 10?31 cm6/molec2·sec were obtained at room temperature where k3M is the rate constant for the reaction O + NO + M → NO2 + M. The rate data are compared and discussed with literature values.  相似文献   

14.
Rate constants for the reactions of O3 and OH radicals with acetylene, propyne, and 1-butyne have been determined at room temperature. The rate constants obtained at 294 ± 2 K for the reactions of O3 with acetylene, propyne, and 1-butyne were (7.8 ± 1.2) × 10?21 cm3/molecule · s, (1.43 ± 0.15) × 10?20 cm3/molecule · s, and (1.97 ± 0.26) × 10?20 cm3/molecule · s, respectively. The rate constants at 298 ± 2 K and atmospheric pressure for the reactions with the OH radical, relative to a rate constant for the reaction of OH radicals with cyclohexane of 7.57 × 10?12 cm3/molecule · s, were determined to be (8.8 ± 1.4) × 10?13 cm3/molecule · s, (6.21 ± 0.31) × 10?12 cm3/molecule · s, and (8.25 ± 0.23) × 10?12 cm3/molecule · s for acetylene, propyne, and 1-butyne, respectively. These data are discussed and compared with the available literature rate constants.  相似文献   

15.
The interaction of Fe2O3 nanoparticles emphasized between poly(propylene glycol) (PPG 4000) and silver triflate (AgCF3SO3) on the conformal changes of coordination sites and the electrochemical properties have been investigated. On the influence of Fe2O3 nanoparticles distribution, the interactions between the ether oxygen in C–O–C of the polymer chain with Ag+ ion as a result of bond strength of the C–O–C stretching vibration, the end group effect has been examined by Fourier transform infrared (FT-IR) spectroscopy. The formation of transient cross-links between polymer chains and filler particles appears to be a characteristic change in the glass transition temperature (T g) and enhance the effective number of cations as well. The strength of ion–polymer interactions was revealed by the transport of ions, t Ag+, and found to be in the range of 0.42–0.50, and the ionic conductivity was ascertained by complex impedance analysis with a maximum of 9.2?×?10?4 S cm?1 at 298 K with a corresponding concentration of 10 wt% Fe2O3 nanoparticles. The temperature dependence of conductivity has been examined based on the Vogel–Tammann–Fulcher (VTF) equation, thereby suggesting the segmental chain motion and free volume changes. From the impedance data, both the dielectric and modulus behaviours have been revealed and both were well correlated as a function of frequency.  相似文献   

16.
Knudsen effusion studies of the sublimation of polycrystalline SnSe and SnSe2, prepared by annealing and chemical vapor transport reactions, respectively, have been carried out using vacuum microbalance techniques in the temperature ranges 736–967 K and 608–760 K, respectively. From experimental mass-loss data for the sublimation reaction SnSe(s) = SnSe(g), the recommended values for the heat of formation and absolute entropy of SnSe(s) were calculated to be ΔH°298,f = ?86.4 ± 9.9 kJ · mol?1 and S°298 = 89.0 ± 7.1 J · K?1 · mol?1. From mass-loss data for the decomposition reaction \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm SnSe}_{\rm 2} ({\rm s)} = {\rm SnSe(s)} + \frac{1}{{\rm x}}{\rm Se}_{\rm x} ({\rm g) (x} = 2 - 8) $\end{document}, the recommended values for the heat of formation and absolute entropy of SnSe2(s) were determined to be ΔH°298,f = ?118.1 ± 15.1 kJ · mol?1 and S°298 = 111.8 ± 11.8 J · K?1 mol?1.  相似文献   

17.
Dense ceramics (Li4+xSi1−xAlxO4 with 0 ≤ x ≤ 0.3) are obtained by sintering at 700–900°C, without prior calcination, of sol-gel powders prepared by an alkoxide-hydroxide route. In comparison with the pure lithium orthosilicate (3 × 10−4 S · cm−1 at 350°C), only a slight enhancement of the ionic conductivity is noted for monophase ceramics with Li4SiO4-type structure (5 × 10−4 S · cm−1 at 350°C for x = 0.3). Higher conductivity (2 × 10−2 S · cm−1 at 350°C) is observed for an heterogeneous material formed of a lithium silicoaluminate phase (x = 0.2) with the Li4SiO4-type structure coexisting with lithium hydroxide. In this two-phase material, ac conductivity and 7Li spin-lattice relaxation data are consistent with the formation of a new kinetic path, via a thin layer along the interface, which enhances the lithium mobility.  相似文献   

18.
The rate of disappearance of C2N2 in the presence of a large excess of H atoms has been measured in a discharge-flow system at pressures near 1 torr and temperatures in the range of 282–338 K. Under these conditions the reaction has a small negative temperature coefficient. A transition from second-order to third-order kinetics with decreasing pressure occurs at pressures near 1 torr. The results are discussed in terms of the mechanism where k7 = (1.5 ± 0.2) × 10–15 cm3/molec1·sec is found for the forward rate of reaction (7). The results also give k7k8/k?7 = 3.7 × 10?31 cm6/molec2·sec and k7k9/k?7 = 3.0 × 10?32 cm6/molec2·sec, the first being probably an upper limit and the second probably a lower limit; hence k8/k9 = 12 is found as an upper limit.  相似文献   

19.
Reactions of OH(v = 1) with HBr, O, and CO have been studied at 295°K using a fast discharge flow apparatus: The reaction O + HBr → OH(v = 1) + Br was used as a source of OH(v = 1), and subsequent chemical reactions of the excited radical were followed using EPR spectroscopy. Rate constants for reactions (2b), (3b), and (6b) were measured as (4.5 ± 1.3) × 10?11, (10.5 ± 5.3) × 10?11, and <5 × 10?12 cm3/molec·sec, respectively. The rate constant for physical deactivation of OH(v = 1) by CO was determined as <4 × 10?13 cm3/molec·sec.  相似文献   

20.
The glass–ceramic electrolytes of (100?x)(0.8Li2S·0.2P2S5xLiI (in mole percent; x?=?0, 2, 5, 10, 15, 20, and 30) were prepared by mechanical milling and subsequent heat treatment. Crystalline phases analogous to the thio-LISICON region II or III in the Li2S–GeS2–P2S5 system were precipitated. The thio-LISICON III analog phase was mainly precipitated at the composition x?=?0, and the thio-LISICON II analog phase was precipitated in the composition range from x?=?2 to 15. The X-ray diffraction peaks of the thio-LISICON II analog phase shifted to the lower diffraction angle side with increasing the LiI content. High conductivities above 2?×?10?3?S?cm?1 at room temperature were observed in the glass–ceramics at the wide composition range from x?=?2 to 15. The glass–ceramic electrolyte at x?=?5 with the highest conductivity of 2.7?×?10?3?S?cm?1 showed a wide electrochemical window of about 10 V. The addition of LiI to the 80Li2S·20P2S5 (in mole percent) glass was effective in crystallizing the thio-LISICON II analog phase with high conductivity from the glass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号