首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The method of influence function is applied to the solution of the boundary-value problem on the free transverse vibrations of a vertical cantilever and a bar subjected to axial loads. To demonstrate the capabilities of the method, a cantilever with the free end under two types of loading — point forces (conservative and follower) and a load distributed along the length (dead load) — is analyzed. A characteristic equation in the general form, which does not depend on the cantilever shape and on the type of axial load, is given. The Cauchy influence function depends on the cantilever shape and the type of axial load. As an example, a tapered cantilever subjected to conservative and follower forces and an elastically supported bar under the dead load are considered in detail. The characteristic equation derived allows one to evaluate the natural frequencies and the Euler critical loads. It is shown that the calculated natural frequencies and critical forces are in a good agreement with the exact values when several terms are retained in the characteristic series. The high accuracy of the method is also confirmed  相似文献   

2.
The free and forced non-linear vibrations of a fixed orthotropic circular plate, with a concentric core of isotropic material, are studied. Existence of harmonic vibrations is assumed and thus the time variable is eliminated by a Ritz-Kantorovich method. Hence, the governing non-linear partial equations for the axisymmetric vibration of the composite circular plate are reduced to a set of ordinary differential equations which form a non-linear eigen-value problem. Solutions are obtained by utilizing the related initial-value problems in conjunction with Newton's integration method. The results reveal the effects of finite amplitude and anisotropy of materials upon the dynamic responses. Further, the method developed in this paper, which is used to solve the title problem, is one of some generality. It can be applied to many differential eigenvalue problems with piecewise continuous functions.  相似文献   

3.
This paper presents the analysis of the global bifurcations and chaotic dynamics for the nonlinear nonplanar oscillations of a cantilever beam subjected to a harmonic axial excitation and transverse excitations at the free end. The governing nonlinear equations of nonplanar motion with parametric and external excitations are obtained. The Galerkin procedure is applied to the partial differential governing equation to obtain a two-degree-of-freedom nonlinear system with parametric and forcing excitations. The resonant case considered here is 2:1 internal resonance, principal parametric resonance-1/2 subharmonic resonance for the in-plane mode and fundamental parametric resonance–primary resonance for the out-of-plane mode. The parametrically and externally excited system is transformed to the averaged equations by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is applied to find the explicit formulas of normal forms associated with a double zero and a pair of pure imaginary eigenvalues. Based on the normal form obtained above, a global perturbation method is utilized to analyze the global bifurcations and chaotic dynamics in the nonlinear nonplanar oscillations of the cantilever beam. The global bifurcation analysis indicates that there exist the heteroclinic bifurcations and the Silnikov type single-pulse homoclinic orbit in the averaged equation for the nonlinear nonplanar oscillations of the cantilever beam. These results show that the chaotic motions can occur in the nonlinear nonplanar oscillations of the cantilever beam. Numerical simulations verify the analytical predictions.  相似文献   

4.
Free vibrations of layered conical shell frusta of differently varying thickness are studied using the spline function approximation technique. The equations of motion for layered conical shells, in the longitudinal, circumferential and transverse displacement components, are derived using extension of Love’s first approximation theory. Assuming the displacement components in a separable form, a system of coupled equations on three displacement functions are obtained. Since no closed form solutions are generally possible, a numerical solution procedure is adopted in which the displacement functions are approximated by cubic and quintic splines. A generalized eigenvalue problem is obtained which is solved numerically for an eigenfrequency parameter and an associated eigenvector of spline coefficients. The vibrations of two-layered conical shells, made up of several types of layer materials and supported differently at the ends are considered. Linear, sinusoidal and exponential variations in thickness of layers are assumed. Parametric studies are made on the variation of frequency parameter with respect to the relative layer thickness, cone angle, length ratio, type of thickness variation and thickness variation parameter. The effect of neglecting the coupling between bending and stretching is also analysed.  相似文献   

5.
提出了热冲击和碰摩故障共同作用下的旋转悬臂板系统动力特性解析解法. 基于变分原理,推导出考虑碰摩力沿宽度方向差异性的薄板系统运动微分方程,将该方程的解分解为热冲击悬臂板准静态解和碰摩薄板热冲击动力解. 通过计算旋转悬臂板的模态特性和温度分布函数,获得了碰摩叶片旋转悬臂板模型的热冲击振动解析解,讨论分析得出热冲击和碰摩故障对薄板振动的影响规律. 研究表明:碰摩振动表现为复杂的多频率耦合振动,高频振动较为显著;热冲击振动表现为简单的低频振动形式,强烈的热冲击导致碰摩薄板趋于低频振动. 碰摩引起的振动形式较热冲击故障更加复杂,更容易引起叶片的破坏. 增大的摩擦系数加剧了碰摩引起的振动,利用减小表面粗糙程度等方法降低摩擦系数,可以达到减小碰摩破坏程度的目的.   相似文献   

6.
提出了热冲击和碰摩故障共同作用下的旋转悬臂板系统动力特性解析解法. 基于变分原理,推导出考虑碰摩力沿宽度方向差异性的薄板系统运动微分方程,将该方程的解分解为热冲击悬臂板准静态解和碰摩薄板热冲击动力解. 通过计算旋转悬臂板的模态特性和温度分布函数,获得了碰摩叶片旋转悬臂板模型的热冲击振动解析解,讨论分析得出热冲击和碰摩故障对薄板振动的影响规律. 研究表明:碰摩振动表现为复杂的多频率耦合振动,高频振动较为显著;热冲击振动表现为简单的低频振动形式,强烈的热冲击导致碰摩薄板趋于低频振动. 碰摩引起的振动形式较热冲击故障更加复杂,更容易引起叶片的破坏. 增大的摩擦系数加剧了碰摩引起的振动,利用减小表面粗糙程度等方法降低摩擦系数,可以达到减小碰摩破坏程度的目的.  相似文献   

7.
This paper deals with the study of the laminar free‐convection boundary‐layer flow about a heated and rotating down‐pointing vertical cone in the presence of a transverse magnetic field. Two cases of heat transfer analysis are discussed. These are: (i) the rotating cone with prescribed surface temperature and (ii) the rotating cone with prescribed surface heat flux. By means of similarity transformation, the governing partial differential equations are reduced into highly non‐linear ordinary differential equations. The resulting non‐linear system has been solved analytically using a very efficient technique, namely homotopy analysis method. Expressions for velocity and temperature fields are developed in a series form. The influence of various pertinent parameters is also seen on the velocity and temperature fields. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents the analysis on the nonlinear dynamics of a deploying orthotropic composite laminated cantilever rectangular plate subjected to the aerodynamic pressures and the in-plane harmonic excitation. The third-order nonlinear piston theory is employed to model the transverse air pressures. Based on Reddy’s third-order shear deformation plate theory and Hamilton’s principle, the nonlinear governing equations of motion are derived for the deploying composite laminated cantilever rectangular plate. The Galerkin method is utilized to discretize the partial differential governing equations to a two-degree-of-freedom nonlinear system. The two-degree-of-freedom nonlinear system is numerically studied to analyze the stability and nonlinear vibrations of the deploying composite laminated cantilever rectangular plate with the change of the realistic parameters. The influences of different parameters on the stability of the deploying composite laminated cantilever rectangular plate are analyzed. The numerical results show that the deploying velocity and damping coefficient have great effects on the amplitudes of the nonlinear vibrations, which may lead to the jumping phenomenon of the amplitudes for first-order and second-order modes. The increase of the damping coefficient can suppress the increase of the amplitudes of the nonlinear vibration.  相似文献   

9.
The problem of controlling the vibration of a transversely excited cantilever beam with tip mass is analyzed within the framework of the Euler–Bernoulli beam theory. A sinusoidally varying transverse excitation is applied at the left end of the cantilever beam, while a payload is attached to the free end of the beam. An active control of the transverse vibration based on cubic velocity is studied. Here, cubic velocity feedback law is proposed as a devise to suppress the vibration of the system subjected to primary and subharmonic resonance conditions. Method of multiple scales as one of the perturbation technique is used to reduce the second-order temporal equation into a set of two first-order differential equations that govern the time variation of the amplitude and phase of the response. Then the stability and bifurcation of the system is investigated. Frequency–response curves are obtained numerically for primary and subharmonic resonance conditions for different values of controller gain. The numerical results portrayed that a significant amount of vibration reduction can be obtained actively by using a suitable value of controller gain. The response obtained using method of multiple scales is compared with those obtained by numerically solving the temporal equation of motion and are found to be in good agreement. Numerical simulation for amplitude is also obtained by integrating the equation of motion in the frequency range between 1 and 3. The developed results can be extensively used to suppress the vibration of a transversely excited cantilever beam with tip mass or similar systems actively.  相似文献   

10.
对功能梯度材料制成的环形截面梁,假设材料的物性参数沿壁厚方向按幂率变化,基于Lagrange函数和Hamilton 原理,建立了该梁横向自由振动的Hamilton 对偶方程组. 采用辛方法求解了Hamilton 矩阵的辛本征问题,得到了简支、两端固定、悬臂和左端固定右端铰支4 种约束的FGM(functionally gradedmaterials)环形截面梁的固有频率和振型函数. 算例给出了这4 种约束的FGM 环形截面梁前8 阶无量纲固有频率随材料体积分数的变化规律,分析了材料体积分数对FGM 环形截面梁固有频率的影响.  相似文献   

11.
A meshfree approach, called displacement boundary method, for anisotropic Kirchhoff plate dynamic analysis is presented. This method is deduced from a variational principle, which uses a modified hybrid functional involving the generalized displacements and generalized tractions on the boundary and the lateral deflection in the domain as independent variables. The discretization process is based on the employment of the fundamental solutions of the static problem operator for the expression of the variables involved in the functional. The stiffness and mass matrices obtained for the dynamic model are frequency-independent, symmetric and positive definite and their computation involves boundary integrals of regular kernels only. Due to its features, the final resolving system can be solved with the classical approaches by using standard numerical procedures. To assess the formulation, the free vibrations of some anisotropic plates were calculated and the results compared with those obtained using other solution techniques. The present results are in good agreement with those found in the literature showing the accuracy and effectiveness of the proposed approach.  相似文献   

12.
Steady free convection boundary layer about a truncated cone embedded in a porous medium saturated with pure or saline water at low temperatures has been studied in this paper. The governing coupled partial differential equations are solved numerically using a very efficient finite-difference method. Several new parameters arise and the results are given for some specific values of these parameters. The obtained results for a Boussinesq fluid are compared with known results from the open literature and it is shown that the agreement between these results is very good.  相似文献   

13.
刘艮  张伟 《力学学报》2019,51(3):912-921
随着材料科学的发展,越来越多的新型材料应用到了工程实践中.在气流激励的作用下,对于以航空航天工程为背景、采用复合材料的板壳结构的非线性动力学问题仍是动力学领域的研究热点.本文研究了复合材料悬臂板在亚音速气流条件下的非线性振动和响应.根据理想不可压缩流体的流动条件和 Kutta--Joukowski升力定理,基于升力面理论,利用涡格法计算了三维有限长平板机翼上的亚音速气动升力.将亚音速气动力施加到复合材料悬臂板上,利用Hamilton原理,考虑Reddy三阶剪切变形理论并引入冯$\cdot$卡门非线性应变位移关系,建立了有限长平板的非线性动力学微分方程.利用有限元方法考察了不同几何参数下层合板悬臂板的固有特性,通过比较不同材料和几何参数的线性系统的固有频率,得到不同比例的内共振关系.利用Galerkin方法将偏微分方程截断为两自由度非线性常微分方程,在这里考虑了1:2的内部共振关系并利用多尺度法进行了摄动分析.对应多个选取参数,得到了频率响应曲线.结果展示了硬化弹簧型行为和跳跃现象.   相似文献   

14.
The higher-order theory is extended to functionally graded beams (FGBs) with continuously varying material properties. For FGBs with shear deformation taken into account, a single governing equation for an auxiliary function F is derived from the basic equations of elasticity. It can be used to deal with forced and free vibrations as well as static behaviors of FGBs. A general solution is constructed, and all physical quantities including transverse deflection, longitudinal warping, bending moment, shear force, and internal stresses can be represented in terms of the derivatives of F. The static solution can be determined for different end conditions. Explicit expressions for cantilever, simply supported, and clamped-clamped FGBs for typical loading cases are given. A comparison of the present static solution with existing elasticity solutions indicates that the method is simple and efficient. Moreover, the gradient variation of Young’s modulus and Poisson’s ratio may be arbitrary functions of the thickness direction. Functionally graded Rayleigh and Euler–Bernoulli beams are two special cases when the shear modulus is sufficiently high. Moreover, the classical Levinson beam theory is recovered from the present theory when the material constants are unchanged. Numerical computations are performed for a functionally graded cantilever beam with a gradient index obeying power law and the results are displayed graphically to show the effects of the gradient index on the deflection and stress distribution, indicating that both stresses and deflection are sensitive to the gradient variation of material properties.  相似文献   

15.
The non-linear free and forced vibrations of simply supported thin circular cylindrical shells are investigated using Lagrange's equations and an improved transverse displacement expansion. The purpose of this approach was to provide engineers and designers with an easy method for determining the shell non-linear mode shapes, with their corresponding amplitude dependent non-linear frequencies. The Donnell non-linear shell theory has been used and the flexural deformations at large vibration amplitudes have been taken into account. The transverse displacement expansion has been made using two terms including both the driven and the axisymmetric modes, and satisfying the simply supported boundary conditions. The non-linear dynamic variational problem obtained by applying Lagrange's equations was then transformed into a static case by adopting the harmonic balance method. Minimisation of the energy functional with respect to the basic function contribution coefficients has led to a simple non-linear multi-modal equation, the solution of which gives in the case of a single mode assumption an expression for the non-linear frequencies which is much simpler than that derived from the non-linear partial differential equation obtained previously by several authors. Quantitative results based on the present approach have been computed and compared with experimental data. The good agreement found was very satisfactory, in comparison with previous old and recent theoretical approaches, based on sophisticated numerical methods, such as the finite element method (FEM), the method of normal forms (MNF), and analytical methods, such as the perturbation method.  相似文献   

16.
This paper presents an analytical and numerical analysis of free and forced transversal vibrations of an elastically connected double-plate system. Analytical solutions of a system of coupled partial differential equations, which describe corresponding dynamical free and forced processes, are obtained using Bernoulli’s particular integral and Lagrange’s method of variation constants. It is shown that one-mode vibrations correspond to two-frequency regime for free vibrations induced by initial conditions and to three-frequency regime for forced vibrations induced by one-frequency external excitation and corresponding initial conditions. The analytical solutions show that the elastic connection between plates leads to the appearance of two-frequency regime of time function, which corresponds to one eigenamplitude function of one mode, and also that the time functions of different vibration modes are uncoupled, for each shape of vibrations. It has been proven that for both elastically connected plates, for every pair of m and n, two possibilities for appearance of the resonance dynamical states, as well as for appearance of the dynamical absorption, are present. Using the MathCad program, the corresponding visualizations of the characteristic forms of the plate middle surfaces through time are presented.The English text was polished by Keren Wang.  相似文献   

17.
In this paper the dynamic analysis of 3-D beam elements restrained at their edges by the most general linear torsional, transverse or longitudinal boundary conditions and subjected in arbitrarily distributed dynamic twisting, bending, transverse or longitudinal loading is presented. For the solution of the problem at hand, a boundary element method is developed for the construction of the 14 × 14 stiffness matrix and the corresponding nodal load vector of a member of an arbitrarily shaped simply or multiply connected cross section, taking into account both warping and shear deformation effects, which together with the respective mass and damping matrices lead to the formulation of the equation of motion. To account for shear deformations, the concept of shear deformation coefficients is used, defining these factors using a strain energy approach. Eight boundary value problems with respect to the variable along the bar angle of twist, to the primary warping function, to a fictitious function, to the beam transverse and longitudinal displacements and to two stress functions are formulated and solved employing a pure BEM approach that is only boundary discretization is used. Both free and forced transverse, longitudinal or torsional vibrations are considered, taking also into account effects of transverse, longitudinal, rotatory, torsional and warping inertia and damping resistance. Numerical examples are presented to illustrate the method and demonstrate its efficiency and accuracy. The influence of the warping effect especially in members of open form cross section is analyzed through examples demonstrating the importance of the inclusion of the warping degrees of freedom in the dynamic analysis of a space frame. Moreover, the discrepancy in the dynamic analysis of a member of a spatial structure arising from the ignorance of the shear deformation effect necessitates the inclusion of this additional effect, especially in thick walled cross section members.  相似文献   

18.
This paper presents the results of applying the partial discretization method to study thin circular plates of varying thickness carrying concentrated inclusions. In this method, the plate with distributed or discrete-distributed mass is reduced to a discrete K-step degree system with the same rigidity function as that of the original plate. The most important task in this method is to form the influence matrix using Cauchy’s influence function. This matrix is further used to obtain a few first terms of the characteristic series in the frequency parameter. The use of this method together with Bernstein’s double estimators and the first three terms retained in the characteristic series reveals its rapid convergence to the exact solutions obtained by Conway and other authors. This demonstrates the rationality and efficiency of the method Published in Prikladnaya Mekhanika, Vol. 42, No. 3, pp. 135–144, March 2006.  相似文献   

19.
The nonlinear vibrations of a composite laminated cantilever rectangular plate subjected to the in-plane and transversal excitations are investigated in this paper. Based on the Reddy??s third-order plate theory and the von Karman type equations for the geometric nonlinearity, the nonlinear partial differential governing equations of motion for the composite laminated cantilever rectangular plate are established by using the Hamilton??s principle. The Galerkin approach is used to transform the nonlinear partial differential governing equations of motion into a two degree-of-freedom nonlinear system under combined parametric and forcing excitations. The case of foundational parametric resonance and 1:1 internal resonance is taken into account. The method of multiple scales is utilized to obtain the four-dimensional averaged equation. The numerical method is used to find the periodic and chaotic motions of the composite laminated cantilever rectangular plate. It is found that the chaotic responses are sensitive to the changing of the forcing excitations and the damping coefficient. The influence of the forcing excitation and the damping coefficient on the bifurcations and chaotic behaviors of the composite laminated cantilever rectangular plate is investigated numerically. The frequency-response curves of the first-order and the second-order modes show that there exists the soft-spring type characteristic for the first-order and the second-order modes.  相似文献   

20.
The effect of boundary condition nonlinearities on free nonlinear vibrations of thin rectangular plates is analyzed. The method for analysis of the plate vibrations with geometrical nonlinearity and the boundary condition nonlinearity is suggested. The nonlinear boundary conditions for membrane forces are transformed into linear ones using the in-plane stress function. Additional boundary conditions for the in-plane displacements vanishing on the clamped edge of the plate are imposed on the stress function. Simply supported and cantilever plates are analyzed. The backbone curves obtained by satisfying linear and nonlinear boundary conditions are compared. It is shown that the results of the calculations with nonlinear boundary conditions differ essentially from the data obtained without these boundary conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号