首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 66 毫秒
1.
以硝酸溶解废旧碱性锌锰电池所得的溶液为原料,以酒石酸为凝胶剂,采用sol-gel法制备出一系列Cu掺杂Mn-Zn铁氧体(Mn0.6–x/2Zn0.4–x/2CuxFe2O4,x=0.1,0.2,0.3和0.4)。经XRD、VSM测试,结果表明:Cu掺杂不仅没有改变Mn-Zn铁氧体的相结构,而且有利于尖晶石结构的形成;Cu掺杂后Mn-Zn铁氧体的Ms、Mr和Hc的变化趋势,都是先增大后减小,最适宜的掺杂量x为0.1。此时,Ms为2.66×105A/m,Mr为5.73×104A/m,Hc为1.6/π×104A/m。  相似文献   

2.
球磨与共沉淀法制备MnZn铁氧体的对比研究   总被引:1,自引:1,他引:1  
分别采用高能球磨和化学共沉淀法制备了MnZn铁氧体,通过XRD、VSM和金相显微镜的分析,对两种铁氧体的预烧料粉末、烧结体的显微结构以及磁性能做了比较。结果表明:化学共沉淀法所制备的预烧料粉末具有晶粒细小、均匀和活性高等优点;与高能球磨法相比,化学共沉淀法烧结磁体的密度较高、晶粒尺寸较大,磁性能更为优良。其相应的磁性能参数Ms、Mr、Hc和μi分别为3.845×102kA/m,3.421kA/m,0.722kA/m和5500。  相似文献   

3.
以正硅酸乙酯和硝酸盐为原料,采用sol-gel法制备了Ni0.25Cu0.25Zn0.5Fe2O4/SiO2纳米复合材料。利用TGA/DTA,XRD,TEM和VSM,研究了热处理过程中,干凝胶的变化及样品的结构、晶粒尺寸和磁性。结果表明:由于样品中SiO2在高温下晶化,随着热处理温度的升高,样品的比饱和磁化强度和矫顽力先增大后减小。经900℃热处理后,样品中Ni0.25Cu0.25Zn0.5Fe2O4粒径约为30nm,比饱和磁化强度Ms为50Am2·kg–1,矫顽力Hc为4.22kA·m–1。  相似文献   

4.
废旧电池水热法制备镍掺杂纳米晶锰锌铁氧体   总被引:1,自引:0,他引:1  
以废旧碱性锌锰电池为原料,采用水热法制备了镍掺杂的纳米晶锰锌铁氧体。用XRD、TEM和VSM,就镍掺杂量对锰锌铁氧体的相结构和磁性能的影响进行了研究。结果表明:镍掺杂的摩尔分数为0~2%时,均可制得具有尖晶石结构的纳米晶锰锌铁氧体。最佳x(Ni2+)为1.5%,此时镍掺杂锰锌铁氧体的Ms、Mr和Hc分别为3.6432×105A/m,2.5088×104A/m和2.388×103A/m。  相似文献   

5.
采用微波水热法合成了锰锌铁氧体纳米粉体,通过XRD、TGA-DTA和TEM等分析手段,对粉体进行了表征。研究了微波水热合成反应温度、时间对反应产物的形貌、粒度的影响。实验结果表明:在微波水热条件下,在80℃,保温时间为5 min的条件下即可制得结晶较好的锰锌铁氧体纳米粉体。温度升高和保温时间延长,均可促进纳米晶的生长,所获得的纳米晶晶粒大小在10 nm左右。  相似文献   

6.
以硫酸亚铁、硫酸锰和硫酸锌为原料,采用碳酸盐共沉淀法制备了Mn1–xZnxFe2O4(x=0,0.2,0.4,0.5和0.6)铁氧体微粉。通过TGA-DSC、XRD和SEM等测试手段,分析其物相、微观结构和形貌,并用振动样品磁强计(VSM)测量其室温磁滞回线,重点探讨了锰锌铁氧体前驱粉在热处理过程中发生的反应。磁性能测试表明,随着Zn2+含量的增加,锰锌铁氧体微粉的比饱和磁化强度先增加后降低,当x(Zn2+)=0.2时,微粉的比饱和磁化强度最大,为84.24A·m2·kg–1。  相似文献   

7.
通过高能球磨将添加剂纳米化,研究了其对永磁铁氧体(样品)磁性能和微观结构的影响。结果表明:添加剂的平均粒度从216.448μm减小到65nm时,有效降低了磁体的熔点,提高其致密化。1190℃烧结时磁体的Br和Hcj分别从404mT、366kA·m–1提高到418mT和402kA·m–1。SEM观察样品晶粒平均粒径在1~2μm,晶粒分布更加均匀。取向度从75.2%提高到84.0%。  相似文献   

8.
Fe~(2+)对纳米软磁锰锌铁氧体生成反应催化作用研究   总被引:1,自引:1,他引:0  
以ZnSO4·7H2O,FeCl3·6H2O和MnSO4为原料,采用液相沸腾回流法,成功地制备出了纳米锰锌铁氧体。本文着重研究了Fe2+对纳米锰锌铁氧体生成反应的催化作用;研究了在反应前驱物中对锰、锌元素实施补偿的可能性。研究表明,Fe2+对纳米锰锌铁氧体生成反应有催化作用,且在pH低于9.6时,催化作用明显;pH=9.6时,补偿Mn可行。  相似文献   

9.
sol-gel法制备Sr~(2+)掺杂的MnZn铁氧体   总被引:1,自引:1,他引:0  
以铁、锰、锌和锶的硝酸盐为原料,以酒石酸为凝胶剂,采用sol-gel法制备了Sr2+掺杂的MnZn铁氧体(Mn0.6Zn0.4-xSrxFe2O4)。借助于XRD、SEM和振动样品磁强计(VSM)等表征手段,研究和分析了Sr2+掺杂量对所得MnZn铁氧体样品晶型、晶貌及磁性能的影响。结果表明:当Sr2+的掺杂量为0.10时,所得MnZn铁氧体样品的Ms为2.1646×105A/m。  相似文献   

10.
sol-gel法制备表面改性纳米氧化锌   总被引:7,自引:0,他引:7  
采用Zn(NO3)2.6H2O和NH3.H2O及合适的表面改性剂,通过sol-gel前驱体法,制备了高纯度的纳米ZnO粉体。采用激光粒度分析、SEM、XRD等手段,对所制备的粉体进行了表征。并研究了主盐浓度、反应温度、反应体系的pH值、表面改性剂等因素对ZnO晶体形成过程和显微结构的影响。结果表明:在Zn2+浓度为0.1mol/L、反应体系温度为50℃、pH值为6.0,采用聚乙二醇(PEG-2000)作为表面改性剂,将制得的前驱体在400℃分解2h,获得了纯度高、分散性好、结晶完整、粒度分布窄、粒状的纳米ZnO粉体。  相似文献   

11.
分散剂在sol-gel法制备PZT粉体中的应用   总被引:1,自引:0,他引:1  
采用sol-gel法制备了PZT纳米粉体。针对硝酸铅会从干凝胶中析出的问题,分析了硝酸铅的析出原因,采取在溶胶中加入柠檬酸三铵作为分散剂来消除硝酸铅的偏析。实验结果表明:当柠檬酸三铵的加入量为醋酸铅的2.5%(摩尔分数)时,能得到粒度较为均匀,组成与计算配方一致的PZT纳米粉体。  相似文献   

12.
sol-gel法制备六方相ZnTiO3粉体的研究   总被引:4,自引:1,他引:4  
首次采用溶胶-凝胶工艺得到了纯六方相ZnTiO3粉体。以Zn(NO3)2·6H2O和Ti(OC4H9)4为原料,通过溶胶-凝胶法制备了纯六方相ZnTiO3粉体。采用DSC-TG,XRD,FT-IR和Raman等现代测试分析手段,对凝胶粉体的热分解和相转变过程进行了研究。实验结果表明,800℃煅烧处理凝胶粉末可获得纯六方钛铁矿相ZnTiO3粉体;但是,这种六方相ZnTiO3的高温稳定性较差,当煅烧温度超过900℃时,六方相ZnTiO3分解为立方结构Zn2TiO4和金红石TiO2。  相似文献   

13.
水热晶化法制备超细MnCO3的研究   总被引:2,自引:0,他引:2  
以Na2CO3和MnCl2.4H2O为原料,采用水热晶化法合成了超细高纯MnCO3,并用SEM、XRD、等离子体发射光谱仪(ICP)对超细MnCO3进行了分析。结果表明,通过水热晶化法制备的MnCO3颗粒呈方形,平均粒径为180 nm,具有结晶完善、形貌较好和分散性良好的特点,适于生产薄介质、高可靠性MLCC的需要。  相似文献   

14.
复合掺杂对高磁导率锰锌铁氧体磁性能的影响   总被引:2,自引:1,他引:1  
用复合掺杂的方法制备了高性能的高磁导率MnZn铁氧体材料。研究了Nb2O5-P2O5复合掺杂对MnZn铁氧体微观结构及磁性能的影响。结果表明,适量的Nb2O5-P2O5复合掺杂有利于促进晶粒均匀致密,提高材料的起始磁导率,降低损耗。在配方中,当ζ(Nb2O5∶P2O5)为2∶8时,起始磁导率可达到11 823。  相似文献   

15.
纳米钛酸锶粉体的特殊液相沉淀法制备   总被引:4,自引:1,他引:4  
以制备纳米钛酸锶粉体为目标,在液相反应胶粒析出机理分析的基础上,通过碳酸铵沉淀途径,采用特殊的快速高强度机械混合液相沉淀法,调控各种工艺条件,例如浓度、pH值、高机械混合强度以及陈化时间等,得到分散性和过滤性均好的碳酸锶和无定形氢氧化氧钛高度混合的纳米粉体前驱体,其粒径为3~4nm(平均3.5nm)。经920℃度焙烧,获得了结晶度好、分散性好、平均粒径56nm的立方相钛酸锶粉体。  相似文献   

16.
采用改进的溶胶–凝胶(sol-gel)工艺配制了(Ba0.65,Sr0.35)TiO3(BST)溶胶。利用旋转涂覆工艺将BST溶胶涂覆在SiO2/Si衬底上,在不同的热处理条件下制备出BST薄膜。XRD分析结果表明:制得的BST薄膜形成了单一钙钛矿结构;AFM测试结果表明,BST薄膜表面平整致密,无裂纹。表面均方根粗糙度为3~6nm,晶粒大小分布均匀,直径约为40~100nm。随着热处理温度的提高,BST薄膜的晶粒变大,表面粗糙度变大。  相似文献   

17.
采用Ti、C粉末为原料,研究了在Ti-C系中添加PVB对燃烧合成TiC的影响。实验结果表明,在Ti-C系中,未添加PVB得到的主要是呈球形状的较大颗粒的TiC,约为5μm;而添加PVB后则得较细的不规则TiC颗粒,添加w(PVB)为10%的TiC颗粒约为1μm,并探讨了上述燃烧合成TiC的机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号