首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
以苯乙烯为单体,甲基丙烯酰氧乙基-N-辛基二甲基溴化铵为功能单体,偶氮二异丁基脒盐酸盐为引发剂,采用两步投料无皂乳液聚合方法,合成了单分散表面带正电荷的聚苯乙烯胶体粒子。在低离子强度的水溶液中,该胶体粒子可以通过表面电荷的静电排斥作用,自组装成胶体晶体阵列并产生Bragg衍射,随着乳液固含量的降低,Bragg衍射波长红移。  相似文献   

2.
聚苯乙烯-丙烯酸纳米粒子的制备及共振光散射性质;无皂乳液聚合;超声辐射  相似文献   

3.
不同尺寸(0.02—0.5μm)单分散聚苯乙烯乳液微球的制备   总被引:7,自引:0,他引:7  
通过对苯乙烯乳液聚合微观动力学以及聚合过程中胶粒直径及其分布随时间变化的理论分析,并通过实验验证,比较了不同乳化剂种类、不同反应温度和不同单体用量条件下,产物胶乳的粒径分布,发现乳液聚合最终产物的粒径分布与成核期长短没有直接联系,而是取决于自由基进入胶粒的速率常数、稳态增长时间、胶粒中的平均自由基数目和胶粒的体积增长速率,胶乳单分散性随这些参量的增大而提高,从而解释了采用高温、高引发剂浓度以及长时间反应的条件对最终的胶粒尺寸分布的影响。本文还通过实验,找到了在20~500nm范围内控制粒径大小及粒径分布的方法。在20~100nm的范围内,用一步法乳液聚合,通过改变单体用量和乳化剂浓度,制备了一系列粒径的单分散聚苯乙烯胶乳;在100~500nm的范围内,运用种子乳液聚合,通过改变溶胀单体与种子胶乳的用量比,也制得了不同粒径的单分散聚苯乙烯胶乳。  相似文献   

4.
通过添加聚乙烯醇和丙酮,找到了一种无皂乳液聚合制备高浓度单分散苯乙烯-甲基丙烯酸甲酯共聚胶体粒子的新途径,粒子半径达纳米数量级,体系的固含量大于50%,研究了聚乙烯醇和丙酮对反应过程,胶乳粒子大小的影响,结果表明聚乙烯醇和丙酮对高浓度无皂纳米胶乳粒子的形成与稳定起重要作用。  相似文献   

5.
微波合成均分散高分子微球及其机理   总被引:4,自引:0,他引:4  
微米级大粒径单分散高分子微球在标准计量、情报信息、分析化学等许多领域都有广泛的应用前景[1],在临床检验和诊断、免疫技术、细胞学研究以及血液循环等生物医学领域也发挥了极大作用[2].在微球的各种特性中,影响其应用的重要因素是微球的尺寸、分散性及形态等,因此对微球的尺寸和均匀性的控制就显得十分重要,对其形成机理的研究也很有意义,对此已有许多实验和理论的报导[3-6].在微波辐射条件下,采取种子聚合法合成高分子微球,可以得到不同尺寸的粒子,并且有很好的分散性,比普通加热条件下反应时间大大缩短,所得数…  相似文献   

6.
Particle-stabilized dispersions such as emulsions, foams and bubbles are catching increasing attentions across a number of research areas. The adsorption mechanism and role of these colloidal particles in stabilizing the oil-water or gas-water interfaces and how these particles interact at interfaces are vital to the practical use of these dispersion systems. Although there have been intensive investigations, problems associated with the stabilization mechanisms and particle-particle interactions at interfaces still remain to explore. In this paper, we first systematically review the historical understanding of particle-stabilized emulsions or bubbles and then give an overview of the most important and well-established progress in the understanding of particle-stabilized systems, including emulsions, foams and liquid marbles. The particle-adsorption phenomena have long been realized and been discussed in academic paper for more than one century and a quantitative model was proposed in the early 1980s. The theory can successfully explain the adsorption of solid particles onto interface from energy reduction approaches. The stability of emulsions and foams can be readily correlated to the wettability of the particles towards the two phases. And extensive researches on emulsion stability and various strategies have been developed to prepared dispersion systems with a certain trigger such as pH and temperature. After that, we discuss recent development of the interactions between particles when they are trapped at the interface and highlight open questions in this field. There exists a huge gap between theoretical approaches and experimental results on the interactions of particles adsorbed at interfaces due to demanding experimental devices and skills. In practice, it is customary to use flat surfaces/interfaces as model surfaces to investigate the particle-particle at interfaces although most of the time interfaces are produced with a certain curvature. It is shown that the introduction of particles onto interfaces can generate charges at the interfaces which could possibly account for the long range electrostatic interactions. Finally, we illustrate that particle-stabilized dispersions have been found wide applications in many fields and applications such as microcapsules, food, biomedical carriers, and dry water. One of the most investigated areas is the microencapsulation of actives based on Pickering emulsion templates. The particles adsorbed at the interface can serve as interfacial stabilizers as well as constituting components of shells of colloidal microcapsules. Emulsions stabilized by solid particles derived from natural and bio-related sources are promising platforms to be applied in food related industries. Emulsion systems stabilized by solid particles of the w/w (water-in-water) feature are discussed. This special type of emulsion is attracting increasing attentions due to their all water features. Besides of oil-water interface, particle stabilized air-water interface share similar stabilization mechanism and several applications reported in the literature are subsequently discussed. We hope that this paper can encourage more scientists to engage in the studies of particle-stabilized interfaces and more novel applications can be proposed based on this mechanism  相似文献   

7.
无皂乳液聚合法制备P(St-MMA-SPMAP)单分散乳胶颗粒   总被引:3,自引:0,他引:3  
利用无皂乳液聚合 ,分别用一步法和两步法合成了单分散的聚 (苯乙烯 甲基丙烯酸甲酯 甲基丙烯酸丙基磺酸钾 ) (P(St MMA SPMAP) )乳胶颗粒 .在该聚合体系中 ,当水溶性磺酸基单体SPMAP的浓度小于 17mmol L时 ,为均相成核过程 ,能制备单分散的乳胶颗粒 .其中 ,用两步法制备的乳胶颗粒相互之间无粘连 .此外 ,还对一步法合成苯乙烯 甲基丙烯酸甲酯 甲基丙烯酸辛基磺酸钠 (P(St MMA SOMAS) )乳胶颗粒进行了初步研究 .  相似文献   

8.
交联聚苯乙烯单分散微球的制备   总被引:1,自引:0,他引:1  
微米级粒度均匀的聚合物微球作为功能高分子材料在分析化学、生物化学、标准计量以及某些高新技术领域中应用广泛。制备聚合物微球的传统方法有乳液和悬浮聚合法。乳液聚合只能制备粒径为0.1-0.7μm的颗粒,采用无皂或低皂乳液聚合法制成的单分散聚合物微球粒径接近1μm,但难于达到1μm以上,且后处理比较麻烦;悬浮聚合制备的聚合物微球粒径则一般在100-1000μm之间,且是多分散性的。而分散聚合获得的微球呈单分散性,是制备粒径为1-10μm的单分散聚合物微球的有效方法。  相似文献   

9.
单分散PS/PAA聚合物微球的研制   总被引:2,自引:0,他引:2  
以苯乙烯为单体,采用分散聚合法制备了单分散性的聚苯乙烯(PS)微球,然后以PS微球作为种子、丙烯酸(AA)进行无皂种子乳液聚合制备了PS/PAA微球。考察了单体、引发剂、分散剂用量,反应介质极性和交链剂等因素对微球粒径大小及其分布的影响,探讨了分散聚合的反应机理。结果表明,通过改变反应工艺条件,能够制备粒径为1.0~3.0μm、单分散性很好的PS微球;通过无皂种子乳液聚合得到的核壳结构的PS/PAA微球粒径为2.50μm,多分散系数(PI)为0.0325,酸值为10.27mgNaOH/g,其表面带有羧基的特性能进一步扩大应用范围。  相似文献   

10.
不同尺寸单分散PMMA/GMA/DVB聚合物荧光微球的制备   总被引:1,自引:0,他引:1  
刘宏波  汪长春 《化学学报》2008,66(10):1269-1273
采用无皂乳液聚合及种子无皂乳液聚合方法制备了200~800 nm四种不同尺寸的单分散PMMA/GMA/DVB (PMGD)复合微球. 用扫描电镜(SEM)和动态光散射(DLS)对粒径尺寸、形貌进行了表征. 实验发现单体滴加速度是影响种子无皂乳液聚合过程二次成核的关键因素. 用乙二胺对微球表面的环氧基团开环后, 通过在微球表面接枝树枝状PAMAM (d-PAMAM)达到微球表面的官能化的目的, 元素分析和红外光谱实验证明了微球表面d-PAMAM的存在. 最后利用微球表面的活性氨基与四甲基异硫氰酸罗丹明(TRITC)反应, 得到四种尺寸的水分散性的红色荧光微球.  相似文献   

11.
比较了超微乳液聚合得到的稀链聚苯乙烯微球(micro-PS)和常规聚苯乙烯(o-PS)在DSC扫描过程中的不同热行为,micro-PS在第一次扫描过程中107℃与157℃处出现放热峰,在第二次扫描过程中放热峰消失,和o-PS相类似,仅出现1个玻璃化转变峰,用偏光显微镜和X射线衍射的方法证明该峰是结晶峰,形成晶体的动力来自于micro-PS的特殊构象。  相似文献   

12.
制备了一种可定性定量检测水溶液中三价铁离子的含铕聚苯乙烯微球, 分别用固体核磁碳谱(13C CP/MAS NMR)、 傅里叶变换红外光谱(FTIR)、 X射线光电子能谱(XPS)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 元素分析、 粒度分析和ζ电位分析等对其化学组成和结构形貌进行表征. 当铕配合物单体用量低于2.5%时, 可以得到稳定的单分散键合型含铕聚苯乙烯微球. 用紫外光激发时, 该含铕聚苯乙烯微球发射铕离子的特征红光. Fe3+能猝灭该微球的荧光, 酸根离子和其它金属离子对其干扰较少; 猝灭效率与Fe3+浓度在0~300 μmol/L浓度范围内均呈线性关系; 随着铕配合物单体用量的增加, 微球的荧光增强, 其在检测Fe3+的荧光时, 猝灭常数(KSV)增加, 检测限(LOD)下降. 调节铕配合物单体的用量, 可获得热性能优异、 红光发射强度高且稳定性好的单分散聚苯乙烯荧光微球, 对Fe3+荧光检测显示出较高的选择性, 在生物检测和环境保护等领域具有较高的应用价值.  相似文献   

13.
应用膜乳化-液中干燥法成功制备出粒径为2~20μm的单分散聚苯乙烯(PS)微球.PS微球的粒径主要由膜孔径决定,其值约为膜孔径的2倍;PS溶液的浓度对其也有一定的影响.膜乳化过程中的压力对微球粒径的分散性有很大的影响,在一定压力范围内,粒径呈单分散.在分散相中加入致孔剂,制备出表面多孔的PS微球.采用复乳-液中干燥法制备出中空PS微球.  相似文献   

14.
A technique aimed at measuring contact angles for microparticles and suitable for determining the linear tension is developed. The technique is based on determining the equilibrium position of the microsphere (where the sum of forces acting on the microsphere is zero) at the liquid–gas interface. This position is unambiguously determined from the experimental force–distance curve obtained for the microparticle–interface interaction. The measurements are performed using an original setup based on the operating principle of the atomic force microscope. The advancing and receding contact angles of water are measured for individual polystyrene microspheres with radii from 1 to 5 m. The contact angles are shown to increase with a decreasing microsphere radius, whereas the hysteresis of the contact angle decreases. The results indicate the existence of a negative linear tension in the case of the rough surface of polystyrene microspheres, which is deformed along the three-phase contact line.  相似文献   

15.
单分散聚苯乙烯交联微球是一类具有高比表面积、吸附性强以及高表面活性的材料,以其优异的疏水性、优越的热稳定性和耐溶剂性能在生物医学、标准计量、电子信息、分析化学、色谱分离等领域具有十分广阔的应用前景,近年来有关交联聚合物微球的制备以及机理研究成为一大热点并且发展较快。本文重点介绍了交联剂存在下分散聚合的反应机理,探讨了单体、引发剂、交联剂、分散剂以及分散介质等对单分散聚苯乙烯交联微球可控制备的影响,展望了聚苯乙烯交联微球的发展趋势和应用前景。  相似文献   

16.
Composites of carbon nanotubes (CNT) in polymeric matrices have attracted considerable attention in the research communities due to their good electrical conductivity, high stiffness and high strength at relatively low CNT contents. Effective utilization of CNT in composites depends primarily on the ability to disperse them homogeneously throughout the polymer matrix, avoiding the formation of bundles due to van der Waals interactions existing between the nanotubes. In this work composites of polystyrene at various percentages of SWNT were fabricated using Latex Technology technique, a polymer type-independent method based on using a surfactant as a dispersing agent. An electrical characterization of SWNT composites was performed both in DC and AC modes. From the analysis of DC data a percolative behavior was found for the conductivity as function of SWNT content. The innovative contribution of this work consists in the modeling of the composite material upon its electrical properties. AC measurements and the analysis of impedance as function of angular frequency lead to the formulation of an equivalent circuit able to model the composite material in correspondence of the percolative threshold.  相似文献   

17.
以苯乙烯(St)、丙烯酸(AA)为单体,二乙烯基苯(DVB)为交联剂,偶氮二异丁腈(AIBN)为引发剂,采用分散聚合和交联剂后滴加法合成了单分散羧基化交联聚苯乙烯微球。通过傅立叶红外光谱(FT-TR),扫描电子显微镜(SEM),激光粒度及Zeta电位分析仪等对微球结构进行了表征。结果表明,引发剂、分散剂用量和交联剂的加入方式对微球粒径及单分散性影响显著,当St用量为15%(wt)、DVB用量为1%(wt)、AA用量为1%(wt)、AIBN用量为2%(wt)、PVP用量为6%(wt)时所制备的微球具有良好的单分散性和球形形貌,粒径达到4μm,且微球表面带负电荷。  相似文献   

18.
Summary: Monodisperse carboxy polystyrene (PS) spheres were synthesized and utilized as an interface to increase the detection sensitivity of some biomolecules. The binding behavior of dacarbazine (DTIC), an anticancer drug, with DNA bases in the absence and presence of the PS spheres was investigated. The results indicated a remarkable effect of PS on the binding behavior of DTIC to DNA bases and significantly enhanced detection sensitivity for the relative biomolecular recognition.

Electrochemical detection of DTIC on a GCE surface in the absence and presence of polystyrene spheres.  相似文献   


19.
界面聚合法合成聚吡咯甲烷微球及其影响因素研究   总被引:3,自引:0,他引:3  
采用吡咯和对二甲氨基苯甲醛通过酸催化静态界面聚合的方法得到了聚[吡咯-2,5-二(对二甲氨基苯甲烷)]微球。通过扫描电镜分析.研究了酸催化剂种类、浓度和反应温度对成球的影响。红外光谱分析表明得到的聚合物具有类似开环卟啉的结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号