首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
房间出口位置及内部布局对疏散效率的影响研究   总被引:5,自引:0,他引:5       下载免费PDF全文
朱孔金  杨立中 《物理学报》2010,59(11):7701-7707
利用先前建立的元胞自动机人员疏散模型,考虑教室类房间内过道区域的影响因素,调整行人转移概率的计算规则,分析了教室不同出口位置、教室内不同布局情况下的疏散效率.结果表明,正对教室过道的出口对疏散是很有利的,教室正面边缘开口和侧面开口相比,宜在侧面开口,以减少行人运动过程中方向的变化,而教室正面中央开口虽然疏散效率最高,但这样的开口不现实;另外,当教室侧面开口时,紧靠出口墙壁侧的过道是必要的,当教室总容量不变时,应优先考虑过道分布的设计,过道的数目和单个过道宽度相比,过道数目对疏散效率的影响更显著,过道数量较多时,疏散效率较高.本文有望为教室内部布局和出口设置,以及影剧院、体育馆看台等类似建筑内座椅和过道的分布设计提供建议.  相似文献   

2.
A bidimensional cellular automaton model is used to simulate the process of evacuation of pedestrians in a room with fixed obstacles. A floor field is defined so that moving to a cell with lower floor field means approaching an exit door. The model becomes non-deterministic by introducing a “panic” parameter, given by a probability of not moving, and by a random choice to resolve conflicts in the update of pedestrian positions. Two types of exit doors are considered: single (where only one person can pass) and double (two persons can pass simultaneously). For a double door, the longest evacuation time turns out to occur for a very traditional location of the door. The optimum door position is determined. Replacing the double door by two single doors does not improve evacuation times noticeably. On the other hand, for a room without obstacles, a simple scaling law is proposed to model the dependence of evacuation time with the number of persons and exit width. This model fails when obstacles are present, as their presence introduces local bottlenecks whose effect outweighs the benefits of increasing door width beyond a certain threshold.  相似文献   

3.
永贵  黄海军  许岩 《物理学报》2013,62(1):10506-010506
利用改进的层次域元胞自动机模型,研究了正菱形网格空间中的行人疏散问题.这类网格可以避免行人贴近房间墙壁或障碍物,转移概率考虑了各种逃生受阻因素.数值仿真显示,出口处的行人分布与实验快照展示的行人分布基本相同,疏散时间和出口宽度呈线性关系,行人流率接近实验结果.  相似文献   

4.
陈亮  郭仁拥  塔娜 《物理学报》2013,62(5):50506-050506
为研究行人疏散过程中的路径选择行为, 提出了一个基于元胞自动机的行人微观模型, 并组织了三组双出口教室内的学生疏散实验. 模型中, 行人路径选择行为受其到出口距离、前方路径通行能力和行人间排斥力影响. 通过观察实验结果, 得到一些相关现象. 利用实验结果对模型参数进行校正. 利用校正模型对该教室内疏散学生流进行仿真, 结果表明 模型能有效地刻画教室内学生流的疏散特征, 疏散时间随学生人数线性增加. 该研究有助于类似场景中行人疏散策略和方案的制定. 关键词: 元胞自动机 行人疏散 仿真 实验  相似文献   

5.
A simulation of pedestrian evacuation from a room with asymmetrical exit layout is presented based on the improved Dynamic Parameter Model in this paper. A special technique is introduced to compute two basic dynamic parameters: Direction-parameter and Empty-parameter considering the effects of pedestrian jam around exits and the width of exits on evacuation path selection in order to reduce evacuation imbalance caused by the asymmetry of exits layout. Two new coefficients: cognition coefficient and imbalance coefficient are introduced to respectively describe pedestrian cognitive ability and the layout imbalance of exits. The simulation results of the improved and original models are compared and analyzed. Simulation results show that evacuation time depends on the cognition coefficient and imbalance coefficient under normal evacuation condition with reasonable pedestrian. It is also found that there are phase transitions and critical points in the simulation curves of evacuation time against cognition coefficient and that the pedestrian flow shows distinctive characteristics at different phases. The values of critical cognition coefficient points depend on the initial pedestrian density and imbalance coefficient.  相似文献   

6.
胡俊  游磊 《物理学报》2014,63(8):80507-080507
为了有效刻画行人在三维空间中的疏散状况,结合阶梯因素提出了一种新的三维元胞自动机模型,该模型首先基于位置吸引力和碰撞可能性给出了行人移动概率的计算公式,并通过定义元胞演化过程阐述其疏散策略,同时,利用建立的仿真平台进行实验,深入分析了疏散时间、出口流率、出口宽度、初始行人密度以及系统平均速度之间的关系,以此获得更加符合实际情况的行人流特征,结果表明,疏散时间、出口流率与初始行人密度呈现正相关,而与出口宽度呈现负相关,并且系统平均速度和出口宽度对于最优疏散时间存在一个理想阈值。  相似文献   

7.
朱诺  贾斌  邵春福  岳昊 《中国物理 B》2012,21(5):50501-050501
An improved dynamic parameter model is presented based on cellular automata. The dynamic parameters, including direction parameter, empty parameter, and cognition parameter, are formulated to simplify tactically the process of making decisions for pedestrians. The improved model reflects the judgement of pedestrians on surrounding conditions and the action of choosing or decision. According to the two-dimensional cellular automaton Moore neighborhood we establish the pedestrian moving rule, and carry out corresponding simulations of pedestrian evacuation. The improved model considers the impact of pedestrian density near exits on the evacuation process. Simulated and experimental results demonstrate that the improvement makes sense due to the fact that except for the spatial distance to exits, people also choose an exit according to the pedestrian density around exits. The impact factors α, β, and γ are introduced to describe transition payoff, and their optimal values are determined through simulation. Moreover, the effects of pedestrian distribution, pedestrian density, and the width of exits on the evacuation time are discussed. The optimal exit layout, i.e., the optimal position and width, is offered. The comparison between the simulated results obtained with the improved model and that from a previous model and experiments indicates that the improved model can reproduce experimental results well. Thus, it has great significance for further study, and important instructional meaning for pedestrian evacuation so as to reduce the number of casualties.  相似文献   

8.
禹尔东  吴正  郭明旻 《物理学报》2014,63(9):94501-094501
本文设计了一个双出口房间内人群疏散的实验方案,通过不同条件下疏散过程的实况录像及视频检测,得到不同人数疏散时间的许多定量结果.提出了双出口房间吸引区间的概念,证明了较小出口吸引区间的边界总是一段圆弧,可以解释行人流出口处的圆形成拱现象.通过类比地铁候车厅内人群疏散过程,建立了双出口房间内疏散时间的二次函数模型,成功拟合不同条件下的实测数据.疏散人数较少时,疏散时间随着人数增加而线性增长;人数较多,在出口附近出现待行区域时,疏散时间则呈二次函数增长.与一些已知疏散时间数学模型相比,本文模型对出口宽度变化的反应更敏感.  相似文献   

9.
林鹏  马剑  卢兆明 《中国物理 B》2016,25(3):34501-034501
A series of accidents caused by crowds within the last decades evoked a lot of scientific interest in modeling the movement of pedestrian crowds. Based on the discrete element method, a granular dynamic model, in which the human body is simplified as a self-driven sphere, is proposed to simulate the characteristics of crowd flow through an exit. In this model, the repulsive force among people is considered to have an anisotropic feature, and the physical contact force due to body deformation is quantified by the Hertz contact model. The movement of the human body is simulated by applying the second Newton's law. The crowd flow through an exit at different desired velocities is studied and simulation results indicated that crowd flow exhibits three distinct states, i.e., smooth state, transition state and phase separation state. In the simulation, the clogging phenomenon occurs more easily when the desired velocity is high and the exit may as a result be totally blocked at a desired velocity of 1.6 m/s or above, leading to faster-to-frozen effect.  相似文献   

10.
初始位置布局不平衡的疏散行人流仿真研究   总被引:2,自引:0,他引:2       下载免费PDF全文
岳昊  张旭  陈刚  邵春福 《物理学报》2012,61(13):130509-130509
行人初始位置布局不平衡的多安全出口疏散过程, 是行人疏散流仿真研究的热点. 利用行人流动态参数仿真模型, 在实际距离和假想距离"极大极小"路径选择机理的基础上, 改进假想距离的计算方法及其拥堵计算区域, 实现疏散过程的动态平衡; 提出行人位置布局的不平衡系数, 以描述疏散空间内行人初始位置布局的不平衡性. 从行人初始位置随机和固定布局的角度, 仿真研究正常疏散环境下行人布局的不平衡性对疏散时间的影响, 并将仿真结果与原始模型做对比分析. 研究表明, 模型能有效地实现行人流疏散过程的动态平衡, 行人疏散时间受行人位置或安全出口布局的影响较小, 而与安全出口总宽度、 行人的初始数量以及拥堵感知系数有关.  相似文献   

11.
Yang-Hui Hu 《中国物理 B》2023,32(1):18901-018901
Building exit as a bottleneck structure is the last and the most congested stage in building evacuation. It is well known that obstacles at the exit affect the evacuation process, but few researchers pay attention to the effect of stationary pedestrians (the elderly with slow speed, the injured, and the static evacuation guide) as obstacles at the exit on the evacuation process. This paper explores the influence of the presence of a stationary pedestrian as an obstacle at the exit on the evacuation from experiments and simulations. We use a software, Pathfinder, based on the agent-based model to study the effect of ratios of exit width ($D$) to distance ($d$) between the static pedestrian and the exit, the asymmetric structure by shifting the static pedestrian upward, and types of obstacles on evacuation. Results show that the evacuation time of scenes with a static pedestrian is longer than that of scenes with an obstacle due to the unexpected hindering effect of the static pedestrian. Different ratios of $D/d$ have different effects on evacuation efficiency. Among the five $D/d$ ratios in this paper, the evacuation efficiency is the largest when $d$ is equal to $0.75D$, and the existence of the static pedestrian has a positive impact on evacuation in this condition. The influence of the asymmetric structure of the static pedestrian on evacuation efficiency is affected by $D/d$. This study can provide a theoretical basis for crowd management and evacuation plan near the exit of complex buildings and facilities.  相似文献   

12.
董力耘  陈立  段晓茵 《物理学报》2015,64(22):220505-220505
基于教室人群疏散实验, 从中归纳出疏散过程中行人的基本运动特征. 将桌椅分别视为不可穿越和可穿越的静态障碍物, 而行人则被当成可移动的障碍物, 这将导致背景场随人群的运动而动态更新, 因此可以更好地反映前方拥挤程度对后面人群路径选择行为的影响. 采用基于动态背景场的元胞自动机模型研究了不同桌椅排列和出口宽度的教室人群疏散过程, 给出了疏散时间的空间分布以及平均和最大疏散时间, 再现了实验中人群疏散的基本特征. 数值模拟结果表明, 疏散时间取决于桌椅的排列方式和教室出口的宽度. 对于同一种排列, 出口越小则疏散时间越长; 对于给定的出口宽度, 通常随着过道数的增加, 疏散时间随之减少; 当过道数增加且过道宽度不足以两人并行, 从两侧进入过道的行人会发生冲突, 使疏散效率有所降低; 靠近出口一侧墙壁设置过道有利于人群的疏散. 文中进一步分析了模拟与实验结果存在差异的原因.  相似文献   

13.
张玉春  马剑  司有亮  冉桐  吴凡雨  王国元  林鹏 《中国物理 B》2017,26(8):84504-084504
A group of competitive people escaping through an exit could lead to the formation of a deadlock, which significantly increases the evacuation time. Such a phenomenon is called the faster-is-slower effect(FIS) and it has been experimentally verified in different systems of particles flowing through an opening. In this paper, the numerical simulation based on discrete element method(DEM) is adopted to study a group of highly competitive people through an exit of varying widths. The FIS effect is observed for a narrow exit whilst it is not observed for the exit wide enough to accommodate two people through it side-by-side. Experimental validation of such a phenomenon with humans is difficult due to ethical issues. The mouse is a kind of self-driven and soft-body creature and it exhibits selfish behaviour under stressed conditions.Particles flowing through an opening in different systems, such as pedestrian flow, animal flow, silo flow, etc. have similar characteristics. Therefore, experimental study is conducted by driving mice to escape through an exit of different widths at varying levels of stimulus. The escape time through a narrow exit(i.e., 2 cm) increases obviously with the increase of stimulus level but it is quite opposite to a wider exit(i.e., 4 cm). The FIS effect is avoided for an exit wide enough to accommodate two mice passing through it side-by-side. The study illustrates that FIF effect could be effectively prevented for an exit when its width is twice the size of particles.  相似文献   

14.
岳昊  邵春福  关宏志  段龙梅 《物理学报》2010,59(7):4499-4507
基于元胞自动机对视线受影响的行人疏散流进行仿真研究.模型根据行人视野半径将疏散空间划分为可见安全出口区域、可见墙壁区域和盲目区域;利用两个动态参数描述行人在不同移动区域内的疏散特征,从而决定行人的行为选择,包括行人定向移动、沿墙移动和正常疏散移动等行为.仿真研究了行人在墙壁上存在疏散指示标志的疏散空间内,视线受影响时采用随机定向寻墙沿墙移动疏散策略的情况下,行人视野半径对行人疏散时间的影响.研究表明,行人疏散时间不仅受行人视野半径的影响,而且还与安全出口的宽度和安全出口利用率有关.  相似文献   

15.
Fatigue even increases the complexity of the pedestrian dynamics which is regarded as a kind of nonlinear system, and might have a significant negative impact on the crowd evacuation. However, it has never been investigated completely and properly. Thus, the fine discrete floor field cellular automata model is modified by integrating the fatigue function to explore the influence of fatigue on the crowd ascending evacuation. The simulation fits well with the empirical data and the observations quantitatively and qualitatively, indicating the model captures the main features of evacuation considering fatigue impact. As a prediction, without merging streams, compared with the case of walking in constant speed, when fatigue is considered, it takes 71.4% longer for all persons to enter the stairs and 87.2% longer to evacuate. With merging streams, fatigue has little impact on the inflow, while it makes the total evacuation time 84.2% longer.  相似文献   

16.
In China, both the mountainous areas and the number of people who live in mountain areas occupy a significant proportion. When production accidents or natural disasters happen, the residents in mountain areas should be evacuated and the evacuation is of obvious importance to public safety. But it is a pity that there are few studies on safety evacuation in rough terrain. The particularity of the complex terrain in mountain areas, however, makes it difficult to study pedestrian evacuation. In this paper, a three-dimensional surface cellular automata model is proposed to numerically simulate the real time dynamic evacuation of residents. The model takes into account topographic characteristics (the slope gradient) of the environment and the biomechanics characteristics (weight and leg extensor power) of the residents to calculate the walking speed. This paper only focuses on the influence of topography and the physiological parameters are defined as constants according to a statistical report. Velocity varies with the topography. In order to simulate the behavior of a crowd with varying movement velocities, and a numerical algorithm is used to determine the time step of iteration. By doing so, a numerical simulation can be conducted in a 3D surface CA model. Moreover, considering residents evacuation around a gas well in a mountain area as a case, a visualization system for a three-dimensional simulation of pedestrian evacuation is developed. In the simulation process, population behaviors of congestion, queuing and collision avoidance can be observed. The simulation results are explained reasonably. Therefore, the model presented in this paper can realize a 3D dynamic simulation of pedestrian evacuation vividly in complex terrain and predict the evacuation procedure and evacuation time required, which can supply some valuable information for emergency management.  相似文献   

17.
A mixed strategy of the exit selection in a pedestrian evacuation simulation with multi-exits is constructed by fusing the distance-based and time-based strategies through a cognitive coefficient, in order to reduce the evacuation imbalance caused by the asymmetry of exits or pedestrian layout, to find a critical density to distinguish whether the strategy of exit selection takes effect or not, and to analyze the exit selection results with different cognitive coefficients. The strategy of exit selection is embedded in the computation of the shortest estimated distance in a dynamic parameter model, in which the concept of a jam area layer and the procedure of step-by-step expending are introduced. Simulation results indicate the characteristics of evacuation time gradually varying against cognitive coefficient and the effectiveness of reducing evacuation imbalance caused by the asymmetry of pedestrian or exit layout. It is found that there is a critical density to distinguish whether a pedestrian jam occurs in the evacuation and whether an exit selection strategy is in effect. It is also shown that the strategy of exit selection has no effect on the evacuation process in the no-effect phase with a low density, and that evacuation time and exit selection are dependent on the cognitive coefficient and pedestrian initial density in the in-effect phase with a high density.  相似文献   

18.
《Physics letters. A》2014,378(28-29):1913-1918
In order to reduce the simulation error of pedestrian evacuation model, a novel three-dimensional cellular automata model was proposed with ladder factor. The calculation formula for transition probability was given in the model based on floor field, position vacancy degree and group attraction, and the evacuation strategy was presented. Meanwhile, the experiment studied the relationships of evacuation time, mean system velocity as well as pedestrian density. The result showed that the evacuation time could be reduced effectively when the mean system velocity and position vacancy had proper degree, and the bigger group had negative effect with the evacuation time, so the bigger group should be avoided in actual evacuation process.  相似文献   

19.
Yan Xu  Hai-Jun Huang 《Physica A》2012,391(4):991-1000
A modified floor field model is proposed to simulate the pedestrian evacuation behavior in a room with multiple exits by considering the direction visual field. Direction visual field is used to describe the pedestrian’s prediction on the propagation of pedestrian flow along some directions. The proposed model outperforms most of the similar models developed so far in such scenario that pedestrians are initially distributed in a room’s specified zone. Simulation results show that the consideration of direction visual field can better reproduce the evacuation process and reduce evacuation time apparently. Sensitivity analyses of the model parameters are presented.  相似文献   

20.
李永行  贾洪飞  李军  周亚楠  原志路  李延忠 《中国物理 B》2016,25(10):108901-108901
Considering the interlayer height, luggage, the difference between queuing pedestrians, and walking speed, the pedestrian choice model of vertical walking facilities is established based on a support vector machine. This model is verified with the pedestrian flow data of Changchun light-rail transfer station and Beijing Xizhimen transfer station. Adding the pedestrian choice model of vertical walking facilities into the pedestrian simulation model which is based on cellular automata, the pedestrian choice behavior is simulated. In the simulation, the effects of the dynamic influence factors are analyzed. To reduce the conflicts between pedestrians in opposite directions, the layout of vertical walking facilities is improved. The simulations indicate that the improved layout of vertical walking facilities can improve the efficiency of pedestrians passing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号