首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
甲酰胺与正负离子表面活性剂有序溶液的研究   总被引:2,自引:0,他引:2  
对羧酸钠与烷基三甲基溴化铵1:1混合体系的研究表明:常温下各体系在不同比例甲酰胺(FA)/水混合溶剂中,表面张力随浓度变化均有明显的转折点,显示了混合体系中胶团的存在.实验中发现随混合溶剂中FA比例增加,各体系的临界胶团浓度(cmc)增大.在较高温度下发现在甲酰胺中亦存在着因胶团形成而产生的表面张力-浓度对数(γ-logc)曲线的转折点,利用相分离模型对体系胶团热力学参数进行了计算.并探讨了FA对正负离子表面活性剂囊泡的影响.  相似文献   

2.
利用荧光探针法和表面张力法测定了一类疏水基中含有苯基的新型甜菜碱两性离子表面活性剂对-烷基-苄基聚氧乙烯醚羧酸甜菜碱(ABECB)的临界胶团浓度(cmc)、胶团微极性和表面张力(γcmc).研究结果表明,荧光探针(芘)法可用来测定这类表面活性剂的临界胶团浓度(cmc),且测定结果与表面张力法(吊片法)接近;ABECB具有较低的cmc和γcmc值,表明此类表面活性剂具有优良的表面活性; 胶团的微极性随着疏水链长的增大而略微减小,氧乙烯(EO)单元数的增大对ABECB胶团核内的微极性影响不明显.  相似文献   

3.
C12-s-C12•2Br和己醇混合水溶液的胶团化行为   总被引:1,自引:0,他引:1  
己醇的加入使C12-s-C12•2Br(s=3,4,6)的临界胶团浓度cmc降低,s越大其影响也越显著.己醇参与组成了混合胶团,当添加的己醇量相同时,它在混合胶团中的摩尔分数几乎一样.混合胶团表面反离子解离度随己醇浓度增大而增大.  相似文献   

4.
己醇的加入使C12-s-C12·2Br(s=3,4,6)的临界胶团浓度cmc降低,s越大其影响也越显著.己醇参与组成了混合胶团,当添加的己醇量相同时,它在混合胶团中的摩尔分数几乎一样.混合胶团表面反离子解离度随己醇浓度增大而增大.  相似文献   

5.
全氟丁基磺酸钠与辛基三乙基溴化铵的相互作用   总被引:1,自引:0,他引:1  
通过测定辛基三乙基溴化铵(C8H17N(CH2CH3)3Br,C8NE)与全氟丁基磺酸钠(C4F9SO3Na,C4F)组成的不同混合比的碳氢-碳氟正负离子表面活性剂混合体系的表面张力,得到不同摩尔比时C8NEC4F体系的临界胶束浓度(cmc)、cmc处的表面张力(γcmc)、总饱和吸附量、不同表面张力时表面吸附层的组成,利用Gibbs-Duhem方程求得cmc处的胶团组成。 采用规则溶液理论计算了胶团中分子间相互作用参数(βm),并求得cmc以上的胶团组成。 实验表明,C8NEC4F复配体系的cmc远远小于单体系的cmc,这也体现在该体系的βm负值很大,胶团内分子相互作用很强。 但是C4F与C8NE复配后γcmc较C4F单体系的变化幅度不是特别大(γcmc降低2~4 mN/m),这是由于C8NEC4F碳链的不对称性导致部分C8NE的碳链在溶液表面弯曲而覆盖了C4F端基CF3基团。 表面吸附层中氟表面活性剂相对于本体溶液是富集的,即使对于C8NE大大过量的体系,表面吸附层组成也在等摩尔附近;对于C4F过量的体系,C4F在表面吸附层中的比例比溶液中的略高。 随着表面张力的降低,表面吸附层的组成相对更偏向于氟表面活性剂。 cmc处的胶团组成随着体系中C4F含量的增大偏向于形成显著富含C4F的胶团,对于C8NE大大过量的体系,胶团组成接近等摩尔。 cmc之后的胶团组成接近等摩尔,主要归因于此时静电相互作用占主导,这和溶液配制过程中发现复配体系超过cmc一定浓度后就易生成沉淀的现象是相符的。  相似文献   

6.
用电导法、稳态荧光法和粘度法研究了二聚表面活性剂C12-s-C12*2Br分子中的连接基团链长度(s=2, 3, 4, 6)对其在水溶液中聚集行为的影响. 实验发现, C12-s-C12*2Br的胶团生成能力远比其单体C12TABr强得多, 前者cmc值较后者降低一个数量级. 胶团聚集数N随表面活性剂浓度c的增大而增大, 其中当s=2时的N值在c=7.7 mmol/L后开始急剧增大. 计算结果表明, 此时胶团形状发生了明显变化, 形成了椭球形的胶团. 粘度测定结果也证实了这一点.  相似文献   

7.
朱永平  赵剑曦  游毅 《化学学报》2002,60(6):1001-1005
随着丙、丁、戊、已醇的加入,与季铵盐二聚表面活性剂C_(12)-2-C_(12)· 2Br组成了混合胶团,醇分子以烷烃链插入胶团中,羟基则位于胶团栅栏层处。这 减弱了表面活性剂离子头基间的静电排斥力,使临界胶团浓度(cmc)降低,同时使 胶团表面反离子解离度增大。随着醇分子的烷烃链增长,这种影响更为显著。  相似文献   

8.
季铵盐二聚表面活性剂C12-s-C12·2Br(s=2、3、4、6)和非离子表面活性剂C12E10或C12E23在水溶液中生成混合胶团.其临界胶团总浓度cmcT值介于二元复配体系中各组分的临界胶团浓度cmc01和cmc02之间.当添加少量非离子型表面活性剂(在水溶液中的摩尔分数α2=0.1)时,混合胶团中C12E10或C12E23的摩尔分数均已超过0.35;随着溶液中非离子型表面活性剂含量的增大,混合胶团中逐渐以C12E10或C12E23成分为主.  相似文献   

9.
林翠英  宋利  赵剑曦 《物理化学学报》2007,23(12):1846-1850
以对二甲氨基苯甲腈(DMABN)为探针, 测定它在表面活性剂(C12TABr、SDS、C12E23、C12-3-12·2Br)水溶液中的第二重荧光强度(Ia)和对应的特征波长(λa)对表面活性剂浓度(c)曲线, 由Ia-c 曲线的转折点或λa-c曲线对应的一阶导数极小点可以获得临界胶团浓度(cmc). 由于C12-3-C12·2Br在水溶液中强烈聚集, 利用λa-c曲线还可以获得其胶团结构松散度的信息.  相似文献   

10.
以对二甲氨基苯甲腈(DMABN)为探针, 测定它在含NaBr或n-C4H9OH的表面活性剂十二烷基三甲基溴化铵(C12TABr)、季铵盐Gemini表面活性剂C12-3-C12·2Br和十二烷基硫酸钠(SDS)水溶液中的第二重荧光对应的强度(Ia)和特征波长(λa)对表面活性剂浓度(c)曲线. 由Ia-c曲线的转折点或λa-c曲线对应的一阶导数极小点可以获得临界胶团浓度(cmc), 扩展了DMABN探针测定表面活性剂cmc的适用性.  相似文献   

11.
The wetting of polydimethylsiloxane oil drops on the surfaces of anionic surfactant sodium dodecylsulfate solutions is studied systematically by changing the bulk surfactant concentration. The wetting state changes from complete wetting to pseudopartial wetting at 0.3 cmc (critical micelle concentration) surfactant concentration and there is a reentrant transition back to complete wetting at 1.4 cmc. The measured free energy is consistent with the prediction of the wetting theory. The interaction potential minimum of the two surfaces of the oil film disappears at the reentrant point, which is speculated to be an effect of micelle formation in the solution.  相似文献   

12.
The effect of ethanol on the interaction between the anionic surfactant sodium dodecyl sulfate (SDS) and the nonionic polymer poly(vinylpyrrolidone) (PVP) has been investigated using a range of techniques including surface tension, fluorescence, electron paramagnetic resonance (EPR), small-angle neutron scattering (SANS), and viscosity. Surface tension and fluorescence studies show that the critical micelle concentration (cmc) of the surfactant decreases to a minimum value around 15 wt % ethanol; that is, it follows the cosurfactant effect. However, in the presence of PVP, the onset of the interaction, denoted cmc(1), between the surfactant and the polymer is considerably less dependent on ethanol concentration. The saturation point, cmc(2), however, reflects the behavior of the cmc in that it decreases upon addition of ethanol. This results in a decrease in the amount of surfactant bound to the polymer [C(bound) = cmc(2) - cmc] at saturation. The viscosity of simple PVP solutions depends on ethanol concentration, but since SANS studies show that ethanol has no effect on the polymer conformation, the changes observed in the viscosity reflect the viscosity of the background solvent. There are significant increases in bulk viscosity when the surfactant is added, and these have been correlated with the polymer conformation extracted from an analysis of the SANS data and with the amount of polymer adsorbed at the micelle surface. Competition between ethanol and PVP to occupy the surfactant headgroup region exists; at low ethanol concentration, the PVP displaces the ethanol and the PVP/SDS complex resembles that formed in the absence of the ethanol. At higher ethanol contents, the polymer does not bind to the ethanol-rich micelle surface.  相似文献   

13.
The aqueous mixed system decyltrimethylammonium bromide (C(10)TAB)-hexadecyltrimethylammonium bromide (C(16)TAB) was studied by conductivity, ion-selective electrodes, surface tension, and fluorescence spectroscopy techniques. The mixture critical micelle concentration, cmc(*), aggregation number, N( *), and micelle molar conductivity, Lambda(M)(cmc), showed that the system aggregation is strongly nonideal. Both cmc(*) and N( *) results were analyzed with two different procedures: (i) the regular solution theory on mixed micelles or Rubingh's theory, and (ii) by the determination of the partial critical micelle concentration of the amphiphile component i in the presence of a constant concentration of the other amphiphile component, cmc(i)( *). The Rubingh procedure gives micelles richer in C(16)TAB than the overall mixtures, while procedure (ii) gives micelles having the same composition as in the complete surfactant mixture (alpha(C(10)TAB). Mixed micelles are larger than pure surfactant ones, with nonspherical shape. Using a literature model, the cause of the synergistic effect seems to be a reduction of the hydrocarbon/water contact at the micelle surface when mixed micelles form. Conductivity and ion-selective electrodes indicate that highly ionized premicelles form immediately before the cmc(*). The air/solution interface is strongly nonideal and much richer in C(16)TAB than the composition in the bulk. When micelles form there is a strong desorption from the air/solution interface because micelles are energetically favored when compared with the monolayer.  相似文献   

14.
The degree of micelle ionization of gemini surfactants has been investigated by using halide-sensitive fluorescence probes (e.g., 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ)). The fluorescence is quenched by the free bromide ions dissociated from surfactants. The degree of micelle ionization increased with increasing spacer chain length, but it decreased with increasing surfactant concentration. The Stern-Volmer plot gave two inflection points (i.e., not only at the cmc but also far above the cmc). The second inflection point suggested spherocylindrical micellar growth with decreases in the degree of micelle ionization. The spherocylindrical micellar growth was depressed with increasing spacer chain length, whereas it was enhanced with increasing tail chain length. The degree of micelle ionization of spherocylindrical micelles depended on the concentration and chain length of gemini surfactants. The change in SPQ fluorescence spectra upon hydrogenation was utilized to evaluate the solubilization site in micelle solutions. The dissolved SPQ in water was instantly reduced by the addition of NaBH4, resulting in abrupt changes in fluorescence intensity and spectral shift. All of the SPQ in micelle solution was also instantly reduced by NaBH4, indicating the existence of SPQ in the water bulk phase, but its fluorescence intensity increased upon the solubilization of hydrogenated SPQ into micelles.  相似文献   

15.
The solution behaviour has been investigated for an alcohol ethoxylate terminated with a formic acid ester. This compound has previously been reported to be an important degradation product in the auto-oxidation of alcohol ethoxylates. In this work we have investigated the solution behaviour of the formic acid ester surfactant C12H25(OCH2CH2)4OCHO (C12E4---OCHO). The pure formate was found to be sparsely soluble in water with no clear point at 0.1%. The critical micelle concentration was found to be 129 μM at 35°C, compared to 50 μM for the parent surfactant C12H25(OCH2CH2)5OH (C12E5). To mimic the behaviour of the oxidised surfactant, the formate was mixed in different ratios with C12E5 and the cloud point, surface tension and critical micelle concentration (cmc) of these mixtures were studied. The gradual increase of formate was found to shift the cloud point and isotropic regions to lower temperatures. The cmc of the mixture was found to be lower than for the pure surfactant. The favourable interaction was analysed according to the non-ideal model by Rubingh and the interaction parameter, β, was determined to be −4±0.53, which is unusually large for a mixture of two non-ionic surfactants. These results indicate that the reduction of cloud point observed during oxidation of non-ionic surfactants can in part be attributed to the formation of formate esters.  相似文献   

16.
A detailed understanding of micelle formation that occurs above a critical micelle concentration (cmc) is a crucial point for the surfactant-assisted preparation of porous materials such as molecular sieves. However, the role of the cmc in the surfactant-assisted electrodeposition of porous oxides is widely unknown. In this study, we investigated the electrodeposition of ZnO films under utilization of alkyl sulfates and alkyl sulfonates with different chain lengths. Cmc values of the surfactants were measured directly in the electrodeposition bath by surface tension measurements. Subsequently, we performed electrodeposition with surfactant concentrations from above the cmc down to concentrations well below the cmc. Beside a lamellar ZnO phase already known from earlier studies, a second nanoparticular ZnO phase was found at concentrations below the cmc.  相似文献   

17.
A potentiometric technique based on surfactant ion selective electrode has been used for various cationic and anionic surfactants. The data obtained contain m 1 (surfactant monomer concentration); m 2 (free counterion concentration) and α (degree of dissociation of micelle) were used for determination of aggregation number at and above cmc (critical micelle concentration). Data fitting show a relationship between aggregation number with such parameters. The correlation equation obtained shows that size of ionic micelle vary sharply after cmc. Also, the equation obtained shows size of micelle growth with increase in counterion concentration.  相似文献   

18.
The interaction between pentaethylene glycol n-octyl ether (C8E5) and low-molecular-weight poly(acrylic acid) (PAA, M(w)=2000) in aqueous solution has been investigated by various experimental techniques at constant polymer concentration (0.1% w/w) with varying surfactant molality. Spectrofluorimetry, using pyrene as molecular probe, shows (i) the formation of surfactant-polymer aggregates at a surfactant molality (T(1)) lower than the critical micelle concentration (cmc) of C8E5 in water and (ii) the formation of free micelles at a surfactant molality (T(2)) slightly higher than the cmc. Fluorescence quenching measurements indicate that the presence of PAA induces a lowering of the C8E5 aggregation number. Calorimetry confirms spectrofluorimetric evidence; in addition, it shows the presence of weak interactions below T(1) between monomeric surfactant molecules and the polymer chains. Tensiometry shows that, above T(1), only a low fraction of surfactant molecules interact with the polymer and that free micelle formation occurs before polymer saturation. The peculiarities of the interaction between surfactants and low-molecular-weight polymers have been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号