首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spontaneous pulse shortening occurring in a relativistic backward wave oscillator (BWO) at gigawatt power levels is studied in experiment and theory. It is experimentally demonstrated that this phenomenon is accompanied by formation of an explosive-emission plasma at the surface of the corrugated slow-wave structure (SWS). Termination of microwave emission is explained by the increase of the BWO starting current from the absorption of the operating electromagnetic wave by electrons emitted from the plasma, whereas the intensity of the absorption radically increases offing to the presence of positive ions emitted from the plasma. Application of oil-free vacuum and electrochemical polishing of the SWS surface in an X-band BWO allowed generation of 3-GW, 26-ns microwave pulses with an energy of ~80 J, thereby demonstrating pulse lengthening by a factor of four  相似文献   

2.
Efficiency enhancement in high power backward-wave oscillators   总被引:1,自引:0,他引:1  
High power microwave (HPM) sources based on the backward-wave oscillator (BWO) have been investigated for the past two decades primarily because of their potential for very high efficiency (15 to 40%) operation. Several different effects have been proposed to explain this high efficiency compared to conventional BWOs. One of the major contributors to the high efficiency of the plasma-filled Pasotron HPM BWO source is the presence of optimally phased end reflections. The Pasotron uses a long-pulse (⩾100 μs) plasma-cathode electron-gun and plasma filled slow-wave structure to produce microwave pulses in the range of 1 to 10 MW without the use of externally produced magnetic fields. The efficiency of the Pasotron can be enhanced by up to a factor of two when the device is configured as a standing-wave oscillator in which properly phased reflections from the downstream collector end of the finite length SWS constructively interfere with the fundamental backward-wave modes and improve the coupling of the beam to the circuit. Operation in this configuration increases the efficiency up to 30% but causes the frequency to vary in discrete steps and the output power to change strongly with beam parameters and oscillation frequency  相似文献   

3.
X波段GW级长脉冲高功率微波源的设计与实验   总被引:3,自引:3,他引:0       下载免费PDF全文
通过理论分析指出,单模相对论返波振荡器内的平均场强正比于其工作频率,工作在高频段难以实现长脉冲运行。采用电磁场仿真方法,比较了X波段单模和过模慢波结构的场分布特点,结果表明:增加过模比能有效减小慢波结构表面的射频场强,但由于场分布变化导致场强的减小与过模比的增加相比并不显著。利用过模比约为3的慢波结构设计了一种X波段长脉冲高功率微波源。实验中,在单次运行条件下,输出微波功率达到2 GW、脉宽80 ns;在20 Hz重复频率运行条件下,输出微波功率达到1.2 GW、脉宽100 ns。器件产生的微波频率为9.38 GHz,主模为TM01,效率约24%。微波窗口和慢波结构表面的射频击穿是目前实验中限制微波功率和脉宽增加的关键因素。  相似文献   

4.
A relativistic backward-wave oscillator (BWO) operating at a frequency near 8 GHz has been built. The parameters of the 60-ns electron beam driving this microwave source are varied over the ranges 0.8-1.5 MV and 2-10 kA. Several different annular cathodes for launching the electron beam are tried, varying the outer radius and shape. The axial magnetic field guiding the beam through the BWO is varied between 0.6 and 3 T. The power transfer downstream to an output waveguide is investigated as a function of the shape of the transition from the BWO to the waveguide. The scaling of the output power and frequency with these variations is discussed. Time-resolved measurements of 2-ns-long segments of the microwave output are shown. In observations of the microwave signal, it is found that the frequency shifts as the output power envelope passes through a sharp dip. It is proposed that this shift corresponds to a change in the longitudinal operating mode of the BWO  相似文献   

5.
带有反射腔的相对论返波管的数值模拟   总被引:11,自引:9,他引:2       下载免费PDF全文
 阐述了带有反射腔的相对论返波管的数值模拟研究。利用线性理论[1]设计了返波管的慢波结构,应用SUPERFISH软件设计了谐振反射器。用KARAT软件对谐振反射腔返波管进行了宏观粒子模拟,得到了优化的返波管结构参数,并研究了外加磁场对输出效率的影响。模拟结果表明:谐振反射腔不仅起到截止颈的作用,还有预调制的作用;在低外加磁场条件下,该返波管也能输出较高功率的微波。显示了其在重复频率工作方面的重要意义。  相似文献   

6.
A relativistic backward wave oscillator (BWO) in tandem with a traveling wave tube (TWT) amplifier has been used to generate relatively long pulses of high-power X-band microwaves. In these experiments, a BWO is used to modulate the annular relativistic electron beam, which subsequently drives a TWT producing high-power microwave radiation. A special RF sever located between the two structures cuts off microwaves generated in the BWO from the TWT. Peak powers in excess of 100 MW are observed with overall beam-to-microwave efficiencies as high as 35%. By operating the BWO below saturation levels, pulse-shortening effects are minimized so that microwave pulses of duration comparable to that of the beam (100 ns) are possible. The operating frequency of the tandem system is tuned from 11 to 12 GHz by varying the effective energy of the beam  相似文献   

7.
An analytical and numerical study of backward wave oscillator (BWO) in linear regime is presented to get an insight into the excitation of electromagnetic waves as a result of the interaction of the relativistic electron beam with a slow wave structure. The effect of background plasma on the BWO instability is also presented.  相似文献   

8.
We study theoretically the processes which take place in a relativistic backward-wave oscillator (BWO) in the parameter region corresponding to hard excitation of oscillations. The onset of both stationary oscillations near the boundary of the hard excitation regime and hard nonstationary oscillations realizing the self-modulation regimes of BWO operation are analyzed along with the dynamics of a BWO-based amplifier. In particular, it is shown that hard excitation of self-oscillation can restrict significantly the output characteristics of a relativistic BWO operated in the regenerative-amplification regime. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 51, No. 8, pp. 675–681, August 2008.  相似文献   

9.
The PASOTRONTM is a unique, high-power microwave source that uses a long-pulse (⩽100 μs) plasma-cathode electron-gun and plasma-filled slow-wave structure (SWS) to produce high-energy microwave pulses. The device utilizes no externally-produced magnetic fields; relying on a beam-generated plasma channel in the SWS to transport the beam. Peak powers of up to 5 MW were previously reported in C-band using a rippled-wall waveguide SWS. Scaling experiments indicated that increasing the beam voltage above the 90 kV C-band operation produces significantly higher peak powers. We report results from an L-band PASOTRONTM BWO designed to operate at 200 kV. The plasma-cathode E-gun built for this device generated beams with voltages of up to 225 kV and currents in excess of 1 kA for pulse lengths of up to 200 μs. The L-band PASOTRONTM BWO produced 10-20 MW of peak power in the TM01 mode, which was converted in the output to a TE11 mode with fixed polarization. The PASOTRON TM also directly produced TE-mode radiation in the 5-10 MW power range with a rotating output polarization, the rate of which can be controlled externally. The peak power and poise width was limited by the stability of the plasma channel at high peak powers and excessive plasma generation in the SWS during the long pulse length  相似文献   

10.
We analyzed the possibility of improving the efficiency of microwave devices operating with relativistic electron beams in systems with particle postacceleration in the interaction space. The fundamental feature of this approach is the formation of the accelerating-potential profile with the inherent electric field of a high-current electron beam. It is shown that the use of the space-variant beam-potential sag helps raise the estimated efficiencies of relativistic Cherenkov TWT and BWO up to values of about 50%.  相似文献   

11.
带有反射腔的相对论返波管初步实验研究   总被引:7,自引:6,他引:1       下载免费PDF全文
 阐述了带有反射腔的相对论返波管的初步实验研究进展。反射腔是一段不规则的圆波导,在相对论返波管中起到截止颈的作用。初步实验的结果为:外加磁场Bz =0.82T时,输出微波功率为170MW,微波频率8.874GHz,脉宽为10ns;外加磁场Bz =1.7T时,微波功率为370MW,频率与脉宽不变;根据辐射场功率密度分布判定传输模式为TM01模。结果表明:带有反射腔的返波管在较低外加磁场下也能够工作。  相似文献   

12.
Coupling impedance Z0 of a continuous relativistic electron beam with the fundamental harmonic of the TM01 wave slowed down to the speed of light in a slow-wave structure (SWS) based on a hollow corrugated waveguide is estimated analytically and using the program based on the scattering matrix method. It is shown that Z0 in relativistic Cherenkov microwave oscillators without a guiding magnetic field realized in earlier experiments with the given type of interaction amounts to about 6–7 Ω, which is several times higher than the coupled impedances averaged over the SWS cross section for–1 and +1 spatial harmonics of the operating wave and can be increased in future to values exceeding 10 Ω due to a decrease in the average SWS diameter in admissible limits. In numerical simulation using the KARAT code, the possibility of reduction of the time of stabilization of oscillations of the Cherenkov microwave oscillator without a guiding magnetic field by 1.5 times is demonstrated.  相似文献   

13.
为提高高功率微波(HPM)辐射天线的功率容量,设计了带均压环的HPM微波辐射天线窗。均压环嵌入介质窗表面后介质窗表面电场分布发生改变,电子运动轨迹也随之发生改变,改变电子运动轨迹能有效抑制二次电子倍增造成的介质窗击穿。当均压环与辐射场电场垂直时,CST模拟表明,均压环的加入基本不影响天线的辐射性能。将其应用于返波管振荡器(BWO)实验中(输出微波为TM01模),结果表明:在束压3 MV、束流10 kA、效率30%时,普通天线窗输出脉宽为45 ns,而加入均压环的天线窗输出脉宽100 ns。  相似文献   

14.
We study the influence of the magnetic-field inhomogeneity on the nonlinear dynamics of the absolute instability of whistler-mode waves in the Earth’s magnetosphere in the presence of a step-like deformation in the distribution function of energetic electrons. Development of this instability, implying the transition of the magnetospheric cyclotron maser to the regime of a backward-wave oscillator (BWO), was proposed earlier as a generation mechanism of magnetospheric chorus emissions. We analyze the results of numerical simulations of the simplified nonlinear equations describing the magnetospheric-BWO dynamics in the case of low efficiency of wave-particle interactions. We found that the case of an inhomogeneous magnetic field where the system length is much greater than the length characterizing the linear stage of the BWO regime has important specific features compared with the case of a homogeneous medium. The main feature of the nonlinear wave dynamics in the magnetospheric BWO in an inhomogeneous magnetic field consists in the fact that for a sufficiently large excess over the generation threshold, a sequence of separate wave packets, i.e., discrete elements, is formed. The frequency within each packet varies in time, and these discrete elements are close in their properties to the chorus elements observed in the magnetosphere. The results of calculations confirm the quantitative estimates of parameters of chorus emissions, which were performed earlier on the basis of the BWO model. Deceased Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 51, No. 11, pp. 977–987, November 2008.  相似文献   

15.
A unique, high-power microwave source, called PASOTRON (Plasma-Assisted Slow-wave Oscillator), has been developed. The PASOTRON utilizes a long-pulse E-gun and plasma-filled slow-wave structure (SWS) to produce high-energy microwave pulses from a simple, lightweight device that utilizes no externally-produced magnetic fields. The novel E-gun employs a low-pressure glow discharge to provide a stable, high current-density electron source. A high-perveance, multi-aperture electron accelerator produces an E-beam that is operated in the ion-focused regime; where the beam-produced plasma filling the SWS space-charge neutralizes the beam, and the self-pinch force compresses the beamlets to provide propagation through the SWS. The PASOTRON E-gun has produced beams with voltages of up to 220 kV and currents in excess of 1 kA for pulse lengths of over 100 μsec. The PASOTRON HPM source normally operates in the TM01 mode, and a unique mode converter has been developed to efficiently produce a TE11 output mode with fixed polarization, The PASOTRON also has the ability to directly produce TE-mode radiation with a rotating output polarization, PASOTRON HPM sources have operated in L, S, C and X-bands, and have produced output powers in the 1 to 5 MW range in C-band at about 20% efficiency with pulse lengths of over 100 μsec  相似文献   

16.
设计了一种能在C波段和X波段实现稳定双频输出的带有非对称谐振反射腔的单电子束同轴相对论返波振荡器。采用耦合阻抗跃变型慢波结构,使用粒子PIC模拟软件进行了粒子模拟研究。模拟结果显示:轴向电场在系统中的分布得到改进,电子束的能散得到改善。在电子束电压511 kV,电流8.95 kA,引导磁场0.73 T的条件下,双频器件实现了8.09 GHz和9.91 GHz的双波段频率稳定输出,平均功率为1.0 GW,波束互作用效率为21.9%, 效率高于空心双波段返波管及其他双波段器件。器件辐射功率的拍频为1.82 GHz,拍波更为明显和稳定。模拟研究中同时发现, 随着慢波结构之间漂移段的变化,双频频率都呈现一种准周期的变化。  相似文献   

17.
Pulse shortening, an effect where the microwave output power from a high-power tube terminates or significantly degrades well before the end of the electron beam pulse, severely limits the energy per pulse and average power capability of many high power microwave (HPM) sources. The cause of pulse shortening varies from device to device, and different causes can simultaneously contribute to the observed power reduction behavior which tends to obscure the underlying mechanisms and possible solutions. In this paper, we show a variety of experimental situations that lead to pulse shortening in HPM sources. The mechanisms of the different pulse shortening triggers are examined in detail in high-vacuum traveling wave tubes (TWT) and plasma-filled backward-wave oscillators (BWO). We find that there are many different causes of pulse shortening such as arcing, mode competition, beam instability, etc. However, the most commonly observed situation that leads to pulse shortening is the combination of sufficiently high power electron beams and poor vacuum conditions that lead to plasma generation. The presence of plasma significantly modifies the beam coupling to the circuit, which can affect the microwave production efficiency on very short time scales. The situations lending to pulse shortening and possible solutions are presented  相似文献   

18.
We consider the nonlinear dynamics of absolute instability of whistler-mode waves in the Earth's magnetosphere in the presence of a step-like deformation in the distribution function of energetic electrons. Development of this instability, implying the transition of the magnetospheric cyclotron maser to the regime of a backward-wave oscillator (BWO), was proposed earlier as a generation mechanism of magnetospheric chorus emissions. We derive simplified nonlinear equations describing the dynamics of the magnetospheric BWO in the case of low efficiency of wave-particle interactions. Numerical simulations of these equations confirm qualitative similarity of the laboratory and magnetospheric BWOs and justify quantitative estimates of parameters of chorus emissions. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 48, No. 9, pp. 719–729, September 2005.  相似文献   

19.
Backward wave oscillators (BWOs) driven by intense relativistic electron beams are very efficient means of producing high-power microwaves. However, the efficiency of conventional BWO is lower than 30%. An X-band oversized BWO with non-uniform slow wave structure is designed to improve RF output characteristics. In particle-in-cell simulation, a high power microwave with a power of 8.0 GW and efficiency of 40% is obtained, compared with that of 30% obtained in a conventional relativistic BWO.  相似文献   

20.
基于低磁场返波管振荡器的工作原理,设计了一个捷变频相对论返波管振荡器,该器件由两段对电子束参数要求基本一致的慢波结构串接而成,通过调节引导磁场强度实现器件频率的调节,使其分别工作于C波段和X波段。在电子能量和束流分别为670keV和8kA的条件下,当引导磁场强度为0.5T时,采用2.5维PIC程序模拟得到频率为6.28GHz、功率为1.0GW的微波输出;而当引导磁场强度为0.8T时,得到频率为9.25GHz、功率为0.75GW的微波输出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号