首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structurally well-defined polymer--nanoparticle hybrids were prepared by modifying the surface of silica nanoparticles with initiators for atom transfer radical polymerization and by using these initiator-modified nanoparticles as macroinitiators. Well-defined polymer chains were grown from the nanoparticle surfaces to yield individual particles composed of a silica core and a well-defined, densely grafted outer polystyrene or poly(methyl methacrylate) layer. In both cases, linear kinetic plots, linear plots of molecular weight (M(n)) versus conversion, increases in hydrodynamic diameter with increasing conversion, and narrow molecular weight distributions (M(w)/M(n)) for the grafted polymer samples were observed. Polymerizations of styrene from smaller (75-nm-diameter) silica nanoparticles exhibited good molecular weight control, while polymerizations of methyl methacrylate (MMA) from the same nanoparticles exhibited good molecular weight control only when a small amount of free initiator was added to the polymerization solution. The difference in polymerization behavior for styrene and MMA was ascribed to the facts that styrene undergoes thermal self-initiation while MMA does not and that termination processes involving freely diffusing chains are faster than those involving surface-bound chains. The polymerizations of both styrene and MMA from larger (300-nm-diameter) silica nanoparticles did not exhibit molecular weight control. This lack of control was ascribed to the very high initial monomer-to-initiator ratio in these polymerizations. Molecular weight control was induced by the addition of a small amount of free initiator to the polymerization but was not induced when 5--15 mol % of deactivator (Cu(II) complex) was added.  相似文献   

2.
Structurally well-defined PMMA-grafted palygorskite nanoparticles were prepared by modifying the surface of palygorskite nanoparticles with initiators for reverse atom transfer radical polymerization (reverse ATRP) and by using these initiator-modified nanoparticles as macroinitiators. Reverse ATRP from palygorskite nanoparticles was then performed to attach well-defined polymer on to an inorganic core. It has been found that the dispersibility of palygorskite particles in organic solvents is significantly improved by grafting polymers onto the surface of palygorskite particles. The polymer-grafted palygorskite nanoparticles possess excellent decoloration capacity in organic solvents.  相似文献   

3.
Abstract

Comb‐like polystyrene grafted silica nanoparticles (c‐PS‐SNs) were prepared by the following steps: (a) methacryloxypropyl silica nanoparticles (MPSNs) were used as macromonomer and free radical copolymerized with 4‐vinyl benzyl chloride (VBC) by a solution polymerization method; (b) the product of (A), poly(4‐vinyl benzyl chloride) grafted silica nanoparticle (PVBC‐SN) was separated and then used as a macroinitiator for the surface‐initiated atom transfer radical polymerization (SI‐ATRP) of styrene catalyzed by the complex of Cu(I)Br and 2,2′‐bipyridyl (bipy) in toluene solutions. The structurally well‐defined polymer chains were grown from the nanoparticle surfaces to yield particles composed of a silica core and a well defined, densely grafted outer comb‐like PS layer. A percentage of grafting (PG%) (the weight ratio of the PS grafted with that of the silica charged) of more than 80% was achieved after a polymerizing time of 5?hr.  相似文献   

4.
The surface grafting onto ultrafine silica via reverse ATRP of methyl methacrylate initiated by peroxide groups introduced onto the surface and conventional ATRP of Styrene initiated by the hybrid nanoparticles were investigated. The introduction of peroxide groups onto the silica surface was achieved by the reaction of hydrogen peroxide with chlorosilyl groups, which were introduced by the treatment of silica with thionyl chloride. Well-defined polymer chains were grown from the nanoparticle surfaces to yield individual particles composed of a silica core and a well-defined, densely grafted outer polymer layer. The polymerization was closely controlled in solution at quite low temperature such as 70 °C. In both cases, linear kinetic plots, linear plots of molecular weight (Mn) versus conversion, in hydrodynamic diameter with increasing conversion, and narrow molecular weight distributions (Mw/Mn) for the grafted polymer samples were observed. Hydrolysis of silica cores by hydrofluoric acid treatment enabled characterization of cleaved polymer using GPC. Ultrathin films of hybrid nanoparticles were examined using TEM and AFM.  相似文献   

5.
采用乙烯基封端的聚 (二甲基硅氧烷 )与溴化氢反应制得末端含有C Br的双官能聚 (二甲基硅氧烷 ) ,以此聚 (二甲基硅氧烷 )大分子为引发剂 ,CuCl为催化剂 ,4 ,4′ 二 (5 壬基 ) 2 ,2′ 联吡啶为配体 ,通过原子转移自由基聚合法 ,制得分子量和结构可控的聚苯乙烯 b 聚硅氧烷 b 聚苯乙烯 (PSt b PDMS b PSt)共聚物 .  相似文献   

6.
A convenient two-step route was developed to prepare new anionic ATRP macroinitiators from near-monodisperse poly(2-hydroxyethyl methacrylate) precursors by partial esterification with 2-bromoisobutyryl bromide, followed by esterification of the remaining hydroxyl groups using excess 2-sulfobenzoic acid cyclic anhydride. These new macroinitiators can be electrostatically adsorbed onto ultrafine cationic Ludox CL silica sols; subsequent surface polymerization of various hydrophilic monomers in aqueous solution at room temperature afforded a range of polymer-grafted ultrafine silica sols. The resulting sterically stabilized particles were characterized by dynamic light scattering, transmission electron microscopy, aqueous electrophoresis, FTIR spectroscopy, and elemental microanalyses.  相似文献   

7.
Poly(methyl methacrylate)s with terminal bromine atom, prepared by bromination of anionically polymerized MMA, were used as ATRP macroinitiators giving di- and triblock copolymers with MMA, styrene and butyl acrylate blocks. Multifunctional ATRP macroinitiators were synthesized by introducing bromomethyl or 2-bromoacyloxy groups onto the main chain of polystyrene or poly(4-methyl styrene) and used for ATRP grafting of tert-butyl acrylate leading to densely grafted copolymers with more or less uniform grafts.  相似文献   

8.
Poly(siloxane‐fluoroacrylate)‐grafted silica hybrid nanoparticles were prepared by surface‐initiated atom transfer radical polymerization (SI‐ATRP). The silica nanoparticles with α‐bromo‐ester initiator group for copper‐mediated ATRP were prepared by the self‐assembled monolayers of (3‐aminopropyl)triethoxysilane and 2‐bromoisobutyrate bromide. Well‐defined diblock copolymer brushes consisting of poly(methacryloxypropyltrimethoxysilane) and poly(2,2,3,3,4,4,4‐heptafluorobutyl methacrylate) blocks were obtained by using initial homopolymer brushes as the macroinitiators for the SI‐ATRP of the second monomer. Chemical compositions and structures of the nanoparticles were characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and gel permeation chromatography. Surface properties and morphology of the nanoparticles were investigated with X‐ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, and water contact angle measurement. It is revealed that the surfaces of the nanocomposites are rough at the microscale and nanoscale. The formation reason of the superhydrophobic surfaces was also discussed in this work. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

9.
Monodisperse silica particles (SiPs) were surface-modified with a newly designed silane coupling agent comprising a triethoxysilane and an alkyl halide, namely, 6-(triethoxysilyl)hexyl 2-bromopropionate, which was further treated with potassium O-ethyl dithiocarbonate (PEX) to immobilize xanthate molecules on the particle surfaces. Surface-initiated macromolecular design via interchange of xanthates (MADIX) polymerization of vinyl acetate (VAc) was conducted with the xanthate-functionalized SiPs. The polymerization was well controlled and produced SiPs coated with poly(vinyl acetate) (PVAc) with a well-defined target molar mass and a graft density of about 0.2 chains nm−2. Dynamic light scattering and TEM measurements revealed that the hybrid particles were highly dispersible in good solvents without any aggregation. The PVAc brushes were hydrolyzed with hydrochloric acid to produce poly(vinyl alcohol) brushes on the SiP surfaces. In addition, the number of xanthate molecules introduced on the SiP surfaces could be successfully controlled by adjusting the concentration of PEX. Thus, the SiPs have two functionalities: xanthates able to act as a MADIX chain-transfer agent and alkyl bromide initiation sites for atom transfer radical polymerization (ATRP). By using these unique bifunctional particles, mixed polymer brushes were constructed on the SiPs by MADIX of VAc followed by ATRP of styrene or methyl methacrylate.  相似文献   

10.
Functionalization of monodisperse magnetic nanoparticles   总被引:1,自引:0,他引:1  
We report a new strategy for the preparation of monodisperse, water-soluble magnetic nanoparticles. Oleic acid-stabilized magnetic nanocrystals were prepared by the organic synthesis route proposed by Sun et al. (J. Am. Chem. Soc. 2004, 126, 273.), with size control obtained via seeded-mediated growth. The oleic groups initially present on the nanoparticle surfaces were replaced via ligand exchange reactions with various capping agents bearing reactive hydroxyl moieties. These hydroxyl groups were (i) exploited to initiate ring opening polymerization (ROP) of polylactic acid from the nanoparticle surfaces and (ii) esterified by acylation to permit the addition of alkyl halide moieties to transform the nanoparticle surfaces into macroinitiators for atom transfer radical polymerization (ATRP). By appropriate selection of the ligand properties, the nanoparticle surfaces can be polymerized in various solvents, providing an opportunity for the growth of a wide variety of water-soluble polymers and polylectrolyte brushes (both cationic and anionic) from the nanoparticle surfaces. The nanoparticles were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), electron microscopy, and light scattering. Light scattering measurements indicate that the nanoparticles are mostly present as individual nonclustered units in water. With pH-responsive polymers grown on the nanoparticle surfaces, reversible aggregation of nanoparticles could be induced by suitable swings in the pH between the stable and unstable regions.  相似文献   

11.
Linear, branched, and arborescent fluoropolymer-Si hybrids were prepared via surface-initiated atom transfer radical polymerization (ATRP) from the 4-vinylbenzyl chloride (VBC) inimer and ClSO(3)H-modified VBC that were immobilized on hydrogen-terminated Si(100), or Si-H, surfaces. The simple approach of UV-induced coupling of VBC with the Si-H surface provided a stable, Si-C bonded monolayer of "monofunctional" ATRP initiators (the Si-VBC surface). The aromatic rings of the Si-VBC surface were then sulfonated by ClSO(3)H to introduce sulfonyl chloride (-SO(2)Cl) groups and to give rise to a monolayer of "bifunctional" ATRP initiators. Kinetics study indicated that the chain growth of poly(pentafluorostyrene) from the functionalized silicon surfaces was consistent with a "controlled" or "living" process. The chemical composition and functionality of the silicon surface were tailored by the well-defined linear and branched fluoropolymer brushes. Atomic force microscopy images revealed that the surface-initiated ATRP of pentafluorostyrene (PFS) had proceeded uniformly on the Si-VBC surface to give rise to a dense and molecularly flat surface coverage of the linear brushes. The uniformity of surfaces with branched brushes was controlled by varying the feed ratio of the monomer and inimer (VBC in the present case). The living chain ends on the functionalized silicon surfaces were used as the macroinitiators for the synthesis of diblock copolymer brushes, consisting of the PFS and methyl methacrylate polymer blocks.  相似文献   

12.
Densely grafted copolymers were synthesized using the “grafting from” approach via the combination of reversible addition‐fragment chain transfer polymerization (RAFT) and atom transfer radical polymerization (ATRP). First, a novel functional monomer, 2,3‐di(2‐bromoisobutyryloxy)ethyl acrylate (DBPPA), with two initiating groups for ATRP was synthesized. It was then polymerized via RAFT polymerization to give macroinitiators for ATRP with controlled molecular weights and narrow molecular weight distributions. Last, ATRP of styrene was carried out using poly(DBPPA)s as macroinitiators to prepare comblike poly(DBPPA)‐graft‐polystyrenes carrying double branches in each repeating unit of backbone via “grafting from” approach. Furthermore, poly(DBPPA)‐graft‐[polystyrene‐block‐poly(t‐BA)]s and their hydrolyzed products poly(DBPPA)‐graft‐[polystyrene‐block‐poly(acrylic acid)]s were also successfully prepared. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 362–372, 2008  相似文献   

13.
用大分子引发剂法制备嵌段共聚物   总被引:6,自引:0,他引:6  
洪春雁  潘才元 《化学通报》2004,67(4):246-256
主要介绍了用大分子引发剂法制备嵌段共聚物的方法。大分子引发剂是从已商品化的功能聚合物制得或用其它活性聚合方法合成。从单封端的端羟基聚合物、其它单官能团或双官能团聚合物以及双功能基团缩聚物制得大分子引发剂.然后用于原子转移自由基聚合(ATRP)、氮氧稳定自由基聚合以及可逆加成裂解链转移(RAFT)聚合等.可制得结构可控、分子量分布窄的嵌段共聚物。  相似文献   

14.
Nanostructured core-shell particles with tailor-made affinity surfaces were used to generate microstructured affinity surfaces by microspotting the particles to form densely packed amorphous nanoparticle layers. These layers provided a large reactive surface for the specific binding of protein ligands from aqueous solution. Biofunctional core-shell particles were synthesized for this purpose that consisted of a silica core with a diameter of 100 nm and an organic shell a few nm thick. The nanoparticle core was prepared by sol-gel chemistry and the shell formed in suspension by organosilane chemistry. The shell provided amino groups or carbonyl groups at its outer surface for subsequent covalent immobilization of streptavidin, rabbit IgG antibodies or goat IgG antibodies. AlexaFluor 647-conjugated and biotinylated cytochrome C and CyDye-labeled anti-rabbit IgG and anti-goat IgG were probed as model analytes. The core-shell nanoparticles were spotted using a pin-ring micro-arrayer onto microscope glass slides that were coated with a polycation monolayer by dip-coating prior to nanoparticle deposition. Amorphous particle layers of well-defined thicknesses in the range of 100 nm to 2 microm were obtained by printing aqueous particle suspensions containing 5-500 mg/mL (0.5-50 wt%) of silica particles. The specific affinity of the plotted nanoparticulate capture surface was demonstrated by binding Cy3-labeled donkey anti-rabbit IgG and Cy5-labeled mouse anti-goat IgG to immobilized rabbit IgG and goat IgG particles. The signal intensity per spot increased for any given analyte concentration when the amount of particles per spot was augmented. This was attributed to the increasing integration of receptor molecules per surface footprint, which shifted the binding equilibrium towards the formation of the receptor-ligand complex. Additionally, the locally-increased supply of receptor molecules at the nanoparticulate microchip surface resulted in a wide dynamic range of 4 fM-20 nM (covering six orders of magnitude).  相似文献   

15.
Low molar mass (∼ 4000) di- and triblock copolymers of styrene and tert-butyl acrylate were synthesized by atom transfer radical polymerization (ATRP) in bulk and solution conditions. A CuBr/N, N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA) catalyst system in conjunction with an alkyl-halide initiator were used to control the synthesis of the polystyrene macroinitiator and the subsequent copolymerization with tert-butyl acrylate. Hydrolysis of the tert-butyl acrylate blocks to acrylic acid blocks in the presence of trifluoroacetic acid resulted in the formation of an amphiphilic block copolymer. Size exclusion chromatography (SEC) and matrix assisted laser desorption ionization - time of flight - mass spectrometry (MALDI-TOF-MS) were used to determine the molar mass and molar mass distribution of the polystyrene macroinitiators and the block copolymers. 1H NMR was used to characterize the polystyrene macroinitiators and the block copolymers, and to confirm hydrolysis of the poly(tert-butyl acrylate) blocks to poly(acrylic acid).  相似文献   

16.
Controlled grafting of well-defined epoxide polymer brushes on the hydrogen-terminated Si(100) substrates (Si-H substrates) was carried out via the surface-initiated atom-transfer radical polymerization (ATRP) at room temperature. Thus, glycidyl methacrylate (GMA) polymer brushes were prepared by ATRP from the alpha-bromoester functionalized Si-H surface. Kinetic studies revealed a linear increase in GMA polymer (PGMA) film thickness with reaction time, indicating that chain growth from the surface was a controlled "living" process. The graft polymerization proceeded more rapidly in the dimethylformamide/water (DMF/H(2)O) mixed solvent medium than in DMF, leading to much thicker PGMA growth on the silicon surface in the former medium. The chemical composition of the GMA graft-polymerized silicon (Si-g-PGMA) surfaces were characterized by X-ray photoelectron spectroscopy (XPS). The fact that the epoxide functional groups of the grafted PGMA were preserved quantitatively was revealed in the reaction with ethylenediamine. The "living" character of the PGMA chain end was further ascertained by the subsequent growth of a poly(pentafluorostyrene) (PFS) block from the Si-g-PGMA surface, using the PGMA brushes as the macroinitiators.  相似文献   

17.
Grafting of polystyrene with narrowly dispersed polymer microspheres through surface-initiated atom transfer radical polymerization (ATRP) was investigated. Polydivinylbenzene (PDVB) microspheres were prepared by dispersion polymerization with poly(N-vinyl pyrrolidone) (PVP) as stabilizer. The surfaces of PDVB microspheres were chloromethylated by chloromethyl methyl ether in the presence of zinc chloride as catalyst to form chloromethylbenzene initiating core sites for subsequent ATRP grafting of styrene using CuCl/bpy as catalytic system. Polystyrene was found to be grafted not only from the particle surfaces but also from within a thin shell layer, resulting in the formation of particles size increased from 2.38-2.58μm, which can further grow to 2.93μm during secondary grafting polymerization of styrene. This demonstrates that grafting polymerization proceeds through a typical ATRP procedure with living nature. All of the prepared microspheres have narrow particle size distribution with coefficient of variation around 10%.  相似文献   

18.
Copper(I)-mediated living radical polymerization was used to synthesize a series of self-crosslinkable ABA triblock copolymers in which the side blocks are formed by a monomer supporting a reactive functional group, as allyl methacrylate (AMA). The copolymers were prepared according with a two steps synthetic methodology. In the first step, ,ω-dibromo homopolymers of polystyrene (PS), poly(methyl methacrylate) (PMMA) and poly(butyl acrylate) (PBA) were synthesized by atom transfer radical polymerization (ATRP). In the second step, these telechelic polymers were employed as macroinitiators for the ATRP of AMA in benzonitrile solution at 70 °C with CuCl/N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA) as catalyst system in order to obtain well-defined functionalized triblock copolymers. The living nature of the block copolymerizations involved was investigated in each case and a similar general behaviour was found. Thus, the molecular weights increased fairly linearly with the conversion degree with first-order kinetics in respect of monomer until moderate conversions, where secondary reactions become more relevant. Finally, intermacromolecular crosslinking were observed giving macrogels as a unique reaction product. The polymers were characterized by different characterization techniques, such as size exclusion chromatography (SEC), 1H NMR spectroscopy and differential scanning calorimetry (DSC). In addition, the facile thermal crosslinking of these block copolymers was evaluated from rheological measurements.  相似文献   

19.
Surface-initiated atom transfer radical polymerization (ATRP) was used to graft hydrophilic comb-like poly((poly(ethylene glycol) methyl ether methacrylate), or P(PEGMA), brushes from chloromethylated poly(phthalazinone ether sulfone ketone) (CMPPESK) membrane surfaces. Prior to ATRP, chloromethylation of PPESK was beforehand performed and the obtained CMPPESK was prepared into porous membranes by phase inversion process. It was demonstrated that the benzyl chloride groups on the CMPPESK membrane surface afforded effective macroinitiators to graft the well-defined polymer brushes. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed the grafting of P(PEGMA) chains. Water contact angle measurements indicated that the introduction of P(PEGMA) graft chains promoted remarkably the surface hydrophilicity of PPESK membranes. The effects of P(PEGMA) immobilization on membrane morphology, permeability and fouling resistance were investigated. It was found that the comb-like P(PEGMA) grafts brought smaller pore diameters and higher solute rejections to PPESK membranes. The results of dynamic anti-fouling experiments showed the anti-fouling ability of the membranes was significantly improved after the grafting of P(PEGMA) brushes.  相似文献   

20.
We have prepared various poly(N-isopropylacrylamide) (PIPAAm)-grafted silica bead surfaces through surface-initiated atom transfer radical polymerization (ATRP) by changing graft densities and brush chain lengths. The prepared surfaces were characterized by chromatographic analysis using the modified silica beads as chromatographic stationary phases. ATRP initiator (2-(m,p-chloromethylphenyl)ethyltrichlorosilane) density on silica bead surfaces was modulated by changing the feed composition of the self-assembled monolayers (SAMs) of mixed silane coupling agents consisting of ATRP initiator and phenethyltrichlorosilane on the surfaces. IPAAm was then polymerized on SAM-modified silica bead surfaces by ATRP in 2-propanol at 25 degrees C. The chain length of the grafted PIPAAm was controlled by simply changing the ATRP reaction time at constant catalyst concentration. The thermoresponsive surface properties of the PIPAAm-grafted silica beads were investigated by temperature-dependent elution behavior of hydrophobic steroids from the surfaces using Milli-Q water as a mobile phase. On the surfaces grafted with shorter PIPAAm chains, longer retention times for steroids were observed on sparsely grafted PIPAAm surfaces compared to dense PIPAAm brushes at low temperature, because of hydrophobic interactions between the exposed phenethyl groups of SAMs on silica surfaces and steroid molecules. Retention times for steroids on dilute PIPAAm chain columns decreased with temperature similarly to conventional reverse-phase chromatographic modes on octadecyl columns. This effect was due to limited interaction of solutes with the PIPAAm-grafted surfaces. Retention times for steroids on dilute PIPAAm brush surfaces with longer PIPAAm chains became greater above the PIPAAm transition temperature. At low-temperature regions, hydrated and expanded PIPAAm at low temperatures prevented hydrophobic interactions between the phenethyl group of SAMs on the silica bead surfaces and steroid molecules. Retention times for steroids on a dense PIPAAm brush column increased with temperature since solvated polymer segments within the dense brush layer undergo dehydration over a broad range of temperatures. In conclusion, PIPAAm graft density has a crucial influence on the elution behavior of steroids because of the interaction of analytes with silica bead interfaces, and because of the characteristic dehydration of PIPAAm in dense-pack brush surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号