首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present density functional theory calculations for atomic hydrogen interacting with a stepped surface, the Pt(211) surface. The calculations have been performed at the generalized gradient approximation level, using a slab representation of the surface. This is the state-of-the-art method for calculating the interaction of atoms or molecules with metal surfaces, nevertheless only few studies have used it to study atoms or molecules interacting with stepped surfaces, and none, to the best of our knowledge, have considered hydrogen interacting with stepped platinum surfaces. Our goal has been to initiate a systematic study of this topic. We have calculated the full three-dimensional potential energy surface (PES) for the H/Pt(211) system together with the vibrational band structure and vibrational eigenfunctions of H. A deep global minimum of the PES is found for bridge-bonded hydrogen on the step edge, in agreement with experimental results for the similar H/Pt(533) system. All the local vibrational excitations at the global minimum have been identified, and this will serve as a helpful guide to the interpretation of future experiments on this (or similar) system(s). Furthermore, from the calculated PES and vibrational band structure, we identify a number of consequences for the interpretation or modelling of diffusion experiments studying the coverage and directional dependence of atomic hydrogen diffusion on stepped platinum surfaces.  相似文献   

2.
We investigate by density-functional theory simulations several elementary reactions associated to direct methane-to-methanol conversion on clean Rh(111) surfaces and on Rh adatoms on Rh(111). Energy barriers and reaction paths have been determined by the nudged elastic band method. The rate-limiting step in the process, C-O bond formation, has higher activation energy than the one for complete methane dehydrogenation. Our analysis enables us to understand the effect of defects on the reactivity and rules out Rh as candidate catalyst for methanol synthesis.  相似文献   

3.
4.
The adsorption and reaction of methanol (CH(3)OH) on stoichiometric (TiO(2)-terminated) and reduced SrTiO(3)(100) surfaces have been investigated using temperature-programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), and first-principles density-functional calculations. Methanol adsorbs mostly nondissociatively on the stoichiometric SrTiO(3)(100) surface that contains predominately Ti(4+) cations. Desorption of a monolayer methanol from the stoichiometric surface is observed at approximately 250 K, whereas desorption of a multilayer methanol is found to occur at approximately 140 K. Theoretical calculations predict weak adsorption of methanol on TiO(2)-terminated SrTiO(3)(100) surfaces, in agreement with the experimental results. However, the reduced SrTiO(3)(100) surface containing Ti(3+) cations exhibits higher reactivity toward adsorbed methanol, and H(2), CH(4), and CO are the major decomposition products. The surface defects on the reduced SrTiO(3)(100) surface are partially reoxidized upon saturation exposure of CH(3)OH onto this surface at 300 K.  相似文献   

5.
The adsorption and dissociation of O2 on Cu low-index surfaces   总被引:1,自引:0,他引:1  
The extended LEPS of O(2)-Cu single crystal plane systems is constructed by means of 5-MP (the 5-parameter Morse potential). Both the adsorption and dissociation of O(2) on Cu low-index surfaces are investigated with extended LEPS in detail. All critical characteristics of the system that we obtain, such as adsorption geometry, binding energy, eigenvalues for vibration, etc., are in good agreement with the experimental results. Our calculated results suggest there are many differences between O(2)-Cu (110) and O(2)-Pd (110) systems. On a Cu (110) surface, O(2) adsorbs in a tilted configuration and there are two lowest energy dissociation channels along the [001] and [10] directions, respectively. We speculate that the adsorption geometry of O(2) on the metal surfaces relates to the lattice constant of metal. Meanwhile, We use the concepts of the molecular dissociation limit and the surface dissociation distance to analyze again the dissociation mechanism of the O(2) on the low-index surfaces.  相似文献   

6.
A thorough investigation of the adsorption and diffusion of Mg, O, and O(2) on MgO(001) terraces is performed by first-principles calculations. The single Mg adatom weakly binds to surface oxygens, diffuses, and evaporates easily at room temperatures. Atomic O strongly binds to surface oxygens, forming peroxide groups. The diffusion of the O adatom is strongly influenced by the spin polarization, since energy barriers are significantly different for the singlet and triplet states. The crossing of the two Born-Oppenheimer surfaces corresponding to the distinct spin states is also analyzed. Although the O(2) molecule does not stick to the perfect surface, it chemisorbs on surface nonstoichiometric point defects such as O vacancies or Mg adatoms, forming in the latter case new chemical species on the surface. We show that the oxidation rate limiting factor in an O(2) atmosphere is the concentration of point defects (O vacancies and Mg adatoms) in the growing surface. The simulated O core-level shifts for the various adsorption configurations enable a meaningful comparison with the measured values, suggesting the presence of peroxide ions on growing surfaces. Finally, the computed energy barriers are used to estimate the Mg and O surface lifetimes and diffusion lengths, and some implications for the homoepitaxial growth of MgO are discussed.  相似文献   

7.
We present an experimental and theoretical investigation of the adsorption, desorption, and dissociation of NO on the stepped Pt (533) surface. By combining temperature programmed desorption and reflection absorption infrared spectroscopy, information about the adsorption sites at different temperatures is obtained. Surprisingly, metastable adsorption structures of NO can be produced through variation of the dosing temperature. We also show that part of the NO molecules adsorbed on the step sites dissociates around 450 K. After dissociation the N atoms can desorb either by combining with an O fragment, or with another N atom, resulting in NO and N(2). The N(2) production can be enhanced by coadsorbing CO on the surface: CO scavenges the oxygen atom, thereby suppressing associative recombinative desorption of N and O atoms. Density functional theory calculations are used to reveal the adsorption energies and vibrational frequencies of adsorbed NO as well as barriers for dissociation of NO and for diffusion of N atoms. The combined experimental results and theoretical calculations reveal that dissociation of NO is the rate limiting step in the formation of N(2).  相似文献   

8.
Periodically stepped NiO(100) surfaces were prepared and characterized with low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and temperature-programmed desorption (TPD). Two vicinal NiO(100) single-crystal samples were cut, oriented, and polished with regular, repeating monatomic steps in six-atom or seven-atom terrace widths. LEED diffraction patterns showed characteristic spot-splitting that corresponded to the appropriate terrace and step height. The nonstepped and stepped NiO(100) surfaces were exposed to bromobenzene at 130 K first to produce a molecularly adsorbed monolayer species and then, with increased exposure, a multilayer adsorbate. An additional adsorbate species, observed only on the stepped surfaces, was found to desorb at 145 K by two competing pathways. One pathway, which saturates at low coverages, leaves bromine behind on the substrate and results in dehalogenation. The other pathway yields molecular desorption at 145 K, but is only observed in detectable amounts after the dehalogenation pathway is saturated. On both stepped and nonstepped NiO(100) substrates, adsorbed bromine resulting from dehalogenation processes appears as nickel bromide, determined by the Br 3p XPS data.  相似文献   

9.
A molecular‐dynamics simulation study has been performed to investigate the Cu adatom diffusion on the (110) stepped surfaces of Ag, using interatomic potentials described by the embedded atom method. We have systematically calculated the energy barriers for different possible diffusion mechanisms, which occur on the terrace and near the step edge. Our findings show that the predominant atomistic diffusion process at step edge and on the terrace is the exchange mechanism with anES barrier about 220 meV lower than that via jumping (290 meV), indicating that the incorporation of Cu adatom into Ag(110) is ‘easier’ than making a jump on the surface. On the other hand, the calculation of the Ehrlich–Schwoebel (ES) barrier demonstrates that this quantity is equal to 0 meV for the exchange process near the step edge and about 60 meV for channel–channel migration. Thus, the mass transport across steps may be important due to the lack of the ES barriers for exchange mechanism, revealing the possible layer‐by‐layer growth mode for our heterogeneous system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Boron inserted as impurity by substitution of carbon atoms in graphite is known to modify the reactivity of the surface in interaction with hydrogen. Boron induces a better H retention capability in graphite while it makes easier the recombination into molecular hydrogen under heating in thermal-desorption experimental conditions. It has already been calculated that boron modifies the electronic structure of the surface, which results in an increase of the adsorption energy for H. This result seems in good agreement with the better retention for H in doped graphite, but contradictory with the easier recombination observed. The aim of this work is to dismiss this contradiction by elucidating the modifications induced by boron in the recombination mechanism. We studied the diffusion of H on pure and boron-doped graphite in the density functional theory framework. We determined a diffusionlike mechanism leading to molecular hydrogen formation. Finally, we have shown the fundamental modifications induced by boron on the [0001] graphite surface reactivity. From these calculations it stands out that recombination is the result of desorption on pure graphite and diffusion on B-doped surfaces, while the activation energy for the rate limiting step is half reduced by boron. The results are compared to experimental observations. The connection between the cluster and periodic quantum modes for graphite is also discussed.  相似文献   

11.
We have studied the adsorption properties of propyne on the Rh(111) surface by means of the generalized gradient approach of density functional theory using periodic slab models. The simulation of the vibrational spectra has permitted us to corroborate and complete the experimental band assignment and to confirm the adsorption site preference. Propyne prefers to sit on a 3-fold hollow site, with the C[triple bond]C axis parallel to a Rh-Rh bond and the molecular plane tilted away from the surface normal. The comparison between the adsorption behaviour of propyne on Rh(111) and on other (111) metal surfaces allows one to provide an explanation for the different reactivity observed experimentally.  相似文献   

12.
本文应用第一性原理的密度泛函(DFT)方法,使用DMol3计算程序,对NO在Rh(100)和Rh(111)面上的吸附与分解进行量化计算,力图解决NO在Rh(100)和Rh(111)面上的优选吸附位、直接分解的过渡态和活化能等重要问题.  相似文献   

13.
The adsorption of atomic oxygen and carbon was studied with plane wave density functional theory on four Ni surfaces, Ni(110), Ni(111), Ni(210), and Ni(531). Various adsorption sites on these surfaces are examined in order to identify the most favorable adsorption site for each atomic species. The dependence of surface bonding on adsorbate coverage is also investigated. Adsorption energies and structural information are obtained and compared with existing experimental results for Ni(110) and Ni(111). In addition, activation barriers to CO dissociation have been determined on Ni(111) and Ni(531) by locating the transition states for these processes. Our results indicate that the binding energies of C are comparatively stronger on stepped surfaces than on flat surfaces, and the energy barriers associated with CO dissociation strongly favor reactions occurring near surface steps.  相似文献   

14.
Plane-wave density functional theory calculations were performed to investigate the binding and diffusion of hydrogen on three flat Ni surfaces, Ni(100), Ni(110), and Ni(111), and two stepped Ni surfaces, Ni(210) and Ni(531). On each surface, the favored adsorption sites were identified by considering the energy and stability of various binding sites and zero-point energy corrections were computed. Binding energies are compared with experimental and theoretical results from the literature. Good agreement with experimental and previous theoretical data is found. At surface coverages where adsorbate-adsorbate interactions are relatively weak, the binding energy of H is similar on the five Ni surfaces studied. Favorable binding energies are observed for stable surface sites, while subsurface sites have unfavorable values relative to the gas phase molecular hydrogen. Minimum energy paths for hydrogen diffusion on Ni surfaces and into subsurface sites were constructed.  相似文献   

15.
The adsorption of H(2)O and its dissociation products, O, H, and OH, on Ag(100) has been studied using an ab initio embedding method. Results at different sites (atop, bridge, and hollow) are presented. The four-fold hollow site is found to be the most stable adsorption site for O, H, and OH, and the calculated adsorption energies are 87.1, 42.7, and 76.2 kcal mol(-1), respectively. The adsorption energy of water at the atop and bridge sites is almost identical with values of 11.1 and 12.0 kcal mol(-1), respectively. The formation of adsorbed OH species by adsorption of water on oxygen-precovered Ag(100) is predicted to be exothermic by 36 kcal mol(-1).  相似文献   

16.
The chemisorption of atoms (H, N, S, O, and C) on Cu surfaces has been systematically studied by the density functional theory generalized gradient approximation method with the slab model. Our calculated results indicate that the orders of the adsorption energy are H < N < S < O < C on Cu(111) and H < N < O < S < C on Cu(110) and Cu(100). Furthermore, the adsorption energies of the given atoms on Cu(100) are larger than those on Cu(111) and Cu(110). The preferred adsorption sites are a 3-fold hollow site on Cu(111) and a 4-fold hollow site on Cu(100), but the preferred adsorption sites on Cu(110) are different for different adatoms. The energy, as well as the geometry, is in good agreement with the experimental and other theoretical data. In addition, this study focuses on the electronic and geometric properties of the metal-atom (M-A) bond to explain the difference in adsorption energies among adatoms. A detailed investigation of the density of states curves explains the nature of the most stable site. Finally, we test the effect of the coverage and find that the surface coverage has no influence on the preferred adsorption sites of the given adatoms on Cu(110) with the exception of hydrogen and oxygen, but has much influence on the value of the adsorption energy.  相似文献   

17.
利用热脱附谱和高分辨能量损失谱技术研究了乙醇在Rh(100)表面的吸会和分解过程,结果表明,130时Rh(100)面暴露乙醇,表面首先形成化学附层,随乙醇暴露增加,表面出现多层凝聚态,表面升温至150K,吸附乙醇从Rh(100)表面脱附,同时部分化学吸附乙醇分子发生羟基断裂,生成表面乙氧基,进一步升谩,表面乙氧基脱氢分解,其分解的主要途径是发生甲基脱氧,β-C与表面发生作用,生成一种含氧的金属有机  相似文献   

18.
The angular distribution of desorbing N(2) was studied in both the thermal decomposition of N(2)O(a) on Rh(100) at 60-140 K and the steady-state NO (or N(2)O) + D(2) reaction on Rh(100) and Rh(110) at 280-900 K. In the former, N(2) desorption shows two peaks at around 85 and 110 K. At low N(2)O coverage, the desorption at 85 K collimates at about 66 degrees off normal towards the [001] direction, whereas at high coverage, it sharply collimates along the surface normal. In the NO reduction on Rh(100), the N(2) desorption preferentially collimates at around 71 degrees off normal towards the [001] direction below about 700 K, whereas it collimates predominantly along the surface normal at higher temperatures. At lower temperatures, the surface nitrogen removal in the NO reduction is due to the process of NO(a) + N(a) --> N(2)O(a) --> N(2)(g) + O(a). On the other hand, in the steady-state N(2)O + D(2) reaction on Rh(110), the N(2) desorption collimates closely along the [001] direction (close to the surface parallel) below 340 K and shifts to ca. 65 degrees off normal at higher temperatures. In the reduction with CO, the N(2) desorption collimates along around 65 degrees off normal towards the [001] direction above 520 K, and shifts to 45 degrees at 445 K with decreasing surface temperature. It is proposed that N(2)O is oriented along the [001] direction on both surfaces before dissociation and the emitted N(2) is not scattered by adsorbed hydrogen.  相似文献   

19.
Half-metallic ferrimagnetic materials such as Fe(3)O(4) are of interest for use in spintronic devices. These devices exploit both the spin and charge of an electron in spin-dependent charge transport. Epitaxial thin films of Fe(3)O(4) have been grown on the three low-index planes of gold by electrodeposition. On Au(110), a [110] Fe(3)O(4) orientation that is aligned with the underlying Au(110) substrate is observed. Thin films on Au(100) grow with three different orientations: [100], [111], and [511]. On Au(111), both [111] and [511] orientations of Fe(3)O(4) are observed. The [511] orientations are the result of twinning on [111] planes. A polarization value of approximately -40% at the Fermi level was measured by spin-polarized photoemission at room temperature for a thin film on Au(111).  相似文献   

20.
Adsorption of carbon monoxide on Pd (210) and (510) stepped surfaces has been investigated by the extended London‐Eyring‐Polyani‐Sato method constructed using a five‐parameter Morse potential. Pd (210) and (510) stepped surfaces consist of terrace with (100) structure and step with (110) character. These results show that there exist common characteristics of CO adsorption on these two surfaces. At low coverage, CO adsorbs in twofold bridge site of the (100) terrace. The critical characteristics inherit that of CO molecule adsorbed in twofold bridge site of (100) original surface. When the coverage is increased, the top site of (110) step is occupied. The critical characteristics resemble that of CO molecule adsorbed in top site of (110) original surface. A number of new sites are exposed on the boundary regions, for example, the fivefold hollow site (H) of these two surfaces. There are stable adsorption sites at high coverage. Because of the different length of the (100) terrace, the (210) and (510) stepped surfaces have some different characteristics. First, CO is tilted adsorption on bridge site of terrace of (210), but perpendicular on terrace of (510) surface. Second, the bridge site (B1) where one Pd atom at the top of the step and the other at the bottom of the step is a stable adsorption site on (210), but the same type of site on Pd (510) surface is not. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号