首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The mechanical and electrical properties of CdTe tetrapod-shaped nanocrystals have been studied with atomic force microscopy. Tapping mode images of tetrapods deposited on silicon wafers revealed that they contact the surface with three of its arms. The length of these arms was found to be 130+/-10 nm. A large fraction of the tetrapods had a shortened vertical arm as a result of fracture during sample preparation. Fracture also occurs when the applied load is a few nanonewtons. Compression experiments with the atomic force microscope tip indicate that tetrapods with the shortened vertical arm deform elastically when the applied force was less than 50 nN. Above 90 nN additional fracture events occurred that further shortened the vertical arm. Loads above 130 nN produced irreversible damage to the other arms as well. Current-voltage characteristics of tetrapods deposited on gold revealed a semiconducting behavior with a current gap of approximately 2 eV at low loads (<50 nN) and a narrowing to about 1 eV at loads between 60 and 110 nN. Atomistic force field calculations of the deformation suggest that the ends of the tetrapod arms are stuck during compression so that the deformations are due to bending modes. Empirical pseudopotential calculation of the electron states indicates that the reduction of the current gap is due to electrostatic effects, rather than strain deformation effects inside the tetrapod.  相似文献   

2.
Quantification of the mechanical properties of cellulose nanomaterials is key to the development of new cellulose nanomaterial based products. Using contact resonance atomic force microscopy we measured and mapped the transverse elastic modulus of three types of cellulosic nanoparticles: tunicate cellulose nanocrystals, wood cellulose nanocrystals, and wood cellulose nanofibrils. These modulus values were calculated with different contact mechanics models exploring the effects of cellulose geometry and thickness on the interpretation of the data. While intra-particle variations in modulus are detected, we did not observe a measureable difference in modulus between the three types of cellulose particles. Improved practices and experimental complications for the characterization of cellulosic nanomaterials with atomic force microscopy are discussed.  相似文献   

3.
The authors report dynamic and coagulation properties of a dispersion of polyelectrolyte multilayer microcapsules filled with solutions of a strong polyelectrolyte. Microcapsules are shown to take a charge of the sign of encapsulated polyions and are characterized by a nonuniform distribution of inner polyions, which indicates a semipermeability of the shell and a leakage of counterions. The capsule self-diffusion coefficient in the vicinity of the similarly charged wall is measured using a particle tracking procedure from confocal images of the dispersion. The diffusion of capsules in the force field suggests that the effective interaction potential contains an electrostatic barrier, so that we deal with the same types of interaction forces as for solid particles. The theoretical estimates of the authors show that when microcapsules are in close proximity, their interaction should even be quantitatively the same as that of colloids with the same surface potential. However, due to the mobility of inner polyions they might repel stronger at large distances. The authors thus conclude that the encapsulation of charged polymers is an important factor in determining the adhesion and interaction properties of multilayer microcapsules.  相似文献   

4.
Nanometer-sized clusters of copper have been produced in a hollow cathode sputtering source and deposited on SiOx. Halo-like structures consisting of micrometer sized protrusions in the silicon oxide surface surrounded by thin rings of smaller particles are observed. The area in between seems to be depleted of particles. We propose that the halo-like structures are a result of electrostatic forces acting between the incoming charged clusters and charged regions on the surface. A simple computer simulation supports this suggestion.  相似文献   

5.
Since its invention twenty years ago the atomic force microscope (AFM) has become one of the most important instruments in colloid and interface science. The ability of tracing force profiles between single particles or particles and flats in liquid environment makes it a tool-of-choice for investigating thin liquid films. In this paper we review experimental work on confined Newtonian and non-Newtonian liquids using the AFM.  相似文献   

6.
Using an atomic force microscope (AFM) the interaction between an AFM tip and different planar solid surfaces have been measured across a long-chain poly(dimethyl siloxane) (PDMS, MW = 18,000 g/mol), a short-chain PDMS (MW = 4200 g/mol), a poly(ethylmethyl siloxane) (PEMS, MW = 16,800 g/mol), and a diblock copolymer consisting of one PDMS and one PEMS block (PDMS-b-PEMS, MW = 15,100 g/mol). The interaction changed significantly during the first 10 h after immersing the solids in the polymer melt. This demonstrates that the time scale of structural changes at a solid surface is much slower than in the bulk. On mica and silicon oxide both polymers formed an immobilized “pinned” layer beyond which a monotonically decaying repulsive force was observed. Attractive forces were observed with short-chain PDMS on silicon oxide and PEMS on mica and silicon oxide. On the basal plane of graphite PEMS caused a stable, exponentially decaying oscillatory force.  相似文献   

7.
The micromechanical properties of pure and cholesterol modified egg yolk phosphatidylcholine (EggPC) vesicles prepared by sonication were studied by atomic force microscopy (AFM) on mica surface. The force curves between an AFM tip and an unruptured vesicle were obtained by contact mode. During approach, two repulsion regions with two breaks were observed. The slopes of the two repulsive force regimes for the pure EggPC vesicles are determined to be several times lower than that of EggPC/cholesterol vesicles. The elastic properties from force plot analysis based on the Hertzian model showed that Young's modulus (E) and the bending modulus (kc) of cholesterol-modified vesicles increased several-fold compared with pure EggPC vesicles. The significant difference is attributed to the enhanced rigidity of the EggPC vesicles as a result of the incorporation of cholesterol molecules. The behavior of cholesterol-modified vesicles upon adsorption is different from that in solution as revealed by mechanical properties. The results indicate that AFM can provide a direct method to measure the mechanical properties of adsorbed small liposomes and to detect the stability change of liposomes.  相似文献   

8.
The aim of this work was to investigate the morphological and structural changes associated with mercerization of cellulose fibres with combined confocal Raman and atomic force microscopy (AFM). During mercerization the alkali induces a change in polymorphic lattice from cellulose I to II. This was observed by confocal Raman spectroscopy from cellulose samples treated with 10, 15 and 25% aqueous sodium hydroxide solution. AFM images from the same samples illustrated that microfibrils were swollen and more granular in cellulose II than in cellulose I. Raman spectral images in plane and depth directions showed that the polymorphous cellulose structure was uniform throughout the cell wall, whereas the microfibril orientation varied between fibre cell wall layers. The changes in microfibril orientation on the sample surfaces were confirmed by AFM images measured from the same sample position.  相似文献   

9.
The morphologies of films spin coated from dilute block copolymer solution onto a mica substrate were studied by atomic force microscopy (AFM). Variables of interest were the polymer concentration, solvent, heating temperature, aging, and ultrasonic effect. It is shown that the solution concentration is the predominant factor in determining the shape of the aggregates displayed from spheres and rods to irregular patches with increasing concentration. The solubility parameter of the solvent plays an important role in modifying the distribution and the size of clusters at the surface. The structures of the aggregates at the surface are metastable, which could evolve with temperature from rodlike aggregates into regular stripes when annealed at a temperature higher than the order-disorder transition temperature of SEBS, whereas those in solution could evolve with aging and ultrasonic treatment into a more stable network structure.  相似文献   

10.
Adhesion forces between different protein layers adsorbed on different substrates in aqueous media have been measured by means of an atomic force microscope using the colloid probe technique. The effects of the loading force, the salt concentration and pH of the medium, and the electrolyte type on the strength, the pull-off distance, and the separation energy of such adhesion forces have been analyzed in depth. Two very different proteins (bovine serum albumin and apoferritin) and two dissimilar substrates (silica and polystyrene) were used in the experiments. The results clearly point out a very important contribution of the electrostatic interactions in the adhesion between protein layers.  相似文献   

11.
The mechanical properties of alkanethiol monolayers on Au(111) in KOH solution have been studied by force spectroscopy. The analysis of the vertical force versus penetration curves showed that monolayer penetration is a stepped process that combines elastic regions with sudden penetration events. The structural meaning of these events can be explained both by the creation of gauche defects on the hydrocarbon chains and by a cooperative molecular tilting model proposed by Barrena et al. [J. Chem. Phys. 113, 2413 (2000)]. The validity of these models for alkanethiol monolayers of different compactness and chain length has been discussed. The Young's modulus (E) of the monolayers has been calculated by using a recently developed model which considers the thickness of the monolayer as a parameter, thus allowing a decoupling of the mechanical properties of the thiol layer from those of the Au(111) substrate. As a result, the calculated E values are in the range of 50-150 Pa, which are remarkably lower than those previously reported in the literature.  相似文献   

12.
A visible rectification effect on the current-voltage curves of metal/porous silicon/p-silicon has been observed by current-sensing atomic force microscopy. The current-voltage curves of porous silicon membranes with different porosities, prepared through variation of etching current density for a constant time, indicate that a higher porosity results in a higher resistance and thus a lower rectification, until the current reaches a threshold at a porosity 〉55%. We propose that the conductance mode in the porous silicon membrane with porosities 〉55% is mainly a hopping mechanism between nano-crystallites and an inverse static electric field between the porous silicon and p-Si interface blocks the electron injection from porous silicon to p-Si, but with porosities ≤55%, electron flows through a direct continuous channel between nano-crystallites.  相似文献   

13.
The adsorption of phosphatidylcholine (PC) vesicles (30, 50, and 100 nm nominal diameters) and of dye-labeled PC vesicles (labeled with 6% Texas Red fluorophore (TR) and encapsulated carboxy fluorescein (CF)) to glass surfaces was studied by contact mode atomic force microscopy in aqueous buffer. These studies were performed in part to unravel details of the previously observed isolated rupture of dye-labeled PC vesicles on glass (Johnson, J. M.; Ha, T.; Chu, S.; Boxer, S. G. Biophys. J. 2002, 83, 3371-3379), specifically to differentiate partial rupture, that is, pore formation and leakage of entrapped dye, from full rupture to form bilayer disks. In addition, the adhesion potential of PC vesicles on glass was calculated based upon the adhesion-driven flattening of adsorbed vesicles and a newly developed theoretical model. The vesicles were found to flatten considerably upon adsorption to glass (width-to-height ratio of approximately 5), which leads to an estimate for the adhesion potential and for the critical rupture radius of 1.5 x 10(-4) J/m2 and 250 nm, respectively. Independent of vesicle size and loading with dye molecules, the adsorption of intact vesicles was observed at all concentrations below a threshold concentration, above which the formation of smooth lipid bilayers occurred. In conjunction with previous work (Johnson, J. M.; Ha, T.; Chu, S.; Boxer, S. G. Biophys. J. 2002, 83, 3371-3379), these data show that 6% TR 20 mM CF vesicles adsorb to the surface intact but undergo partial rupture in which they exchange content with the external buffer.  相似文献   

14.
Mapping of the surface properties of Staphylococcus epidermidis and of biofilm forming bacteria in general is a key to understand their functions, particularly their adhesive properties. To gain a comprehensive view of the structural and chemical properties of S. epidermidis, four different strains (biofilm positive and biofilm negative strains) were analyzed using in situ atomic force microscopy (AFM). Force measurements performed using bare hydrophilic silicon nitride tips disclosed similar adhesive properties for each strain. However, use of hydrophobic tips showed that hydrophobic forces are not the driving forces for adhesion of the four strains. Rather, the observation of sawtooth force-distance patterns on the surface of biofilm positive strains documents the presence of modular proteins such as Aap that may mediate cell adhesion. Treatment of two biofilm positive strains with two chemical inhibitor compounds leads to a loss of adhesion, suggesting that AFM could be a valuable tool to screen for anti-adhesion molecules.  相似文献   

15.
The recent emergence of hyperbranched polymers has opened the door for the design of a large variety of novel, well‐controlled chain architectures. For instance, «comb‐like» and “dendritic‐like” polymers can be obtained from hyperbranched poly(chloroethyl vinyl ether)‐g‐polystyrene (PCEVE‐g‐PS) copolymers, with excellent control over the dimensions of the polystyrene lateral branches and the PCEVE backbone. In this work, the nanometer scale organization of these materials is studied by means of Tapping Mode Atomic Force Microscopy. We focus on the influence of the intrinsic molecular architecture of the hyperbranched PCEVE‐g‐PS on the organization of the material. In the case of thin deposits, we observe a layer‐by‐layer organization. On the free surface, it is possible to image single polymer molecules and to analyze their size in terms of polymer molecular weight. In most cases, the molecules are found to adopt an extended conformation and to form lamellar arrangements. We observe that the degree of lateral ordering of these molecules strongly depends on their intrinsic architecture.  相似文献   

16.
We propose herein a method to study local surface charge dissipation in dielectric films using force spectroscopy technique of atomic force microscopy. By using a normalization procedure and considering an analytical expression of the tip‐sample interaction force, we could estimate the characteristic time decay of the dissipation process. This approach is completely independent of the atomic force microscopy tip geometry and considerably reduces the amount of experimental data needed for the calculation compared with other techniques. The feasibility of the method was demonstrated in a freshly cleaved mica surface, in which the local charge dissipation after cleavage followed approximately a first‐order exponential law with the characteristic time decay of approximately 7–8 min at 30% relative humidity (RH) and 2–3.5 min at 48% RH. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
With the aid of atomic force microscopy, the intermolecular forces between acetyleholinesterases (AChE) and its natural substrate acetylcholine (ACh) have been studied. Through force spectrum measurement based on imaging of AChE molecules it was found that the attraction force between individual molecule pairs of ACh and AChE was (10±1) pN just before the quaternary ammonium head of ACh got into contact with the negative end of AChE and the decaying distance of attraction was (4±1) nm from the surface of ACHE. The adhesion force between individual ACh and AChE molecule pairs was (25±2) pN, which had a decaying feature of fast-slow-fast (FSF). The attraction forces between AChE and choline (Ch), the quaternary ammonium moiety and hydrolysate of ACh molecule, were similar to those between AChE and ACh. The adhesion forces between AChE and Ch were (20±2) pN, a little weaker than that between ACh and ACHE. These results indicated that AChE had a steering role for the diffusion of ACh toward it and had r  相似文献   

18.
Using an atomic force microscope (AFM) the interaction between an AFM tip and a planar silicon oxide surface has been measured across poly(dimethylsiloxane) (PDMS, MW = 18 000). Due to the small radius of curvature of the AFM tip the hydrodynamic repulsion of the tip was negligible and forces could be measured in equilibrium. This is confirmed by the fact that force-versus-distance curves measured at different approaching velocities were indistinguishable. In equilibrium a repulsive force was observed which could best be described by a power law, F ∝ 1/d2.5 where d is the distance.  相似文献   

19.
We synthesized a cationic polymer, poly(PEGMA)-4N, which has brush-like chains and four positively charged amino groups at the end of the molecules. DNA condensation induced by poly(PEGMA)-4N was investigated through electrophoresis assay by its ability to retard DNA mobility and to inhibit HindIII enzyme cleavage. The detailed structures of DNA condensates induced by poly(PEGMA)-4N were observed through atomic force microscopy (AFM). Interactions between polymers and DNA are mainly attributed into depletion effect and electrostatic interaction. Positively charged amino groups in poly(PEGMA)-4N interact with DNA through electrostatic interaction, and depletion effect also takes effect because poly(PEGMA)-4N is a flexible polymer. Comparing the contributions that the two interactions gave in DNA condensation process, we found that depletion effect played a major role compared with electrostatic interaction.  相似文献   

20.
Polymeric thin films have been awakening continuous and growing interest for application in nanotechnology. For such applications, the assessment of their (nano)mechanical properties is a key issue, since they may dramatically vary between the bulk and the thin film state, even for the same polymer. Therefore, techniques are required for the in situ characterization of mechanical properties of thin films that must be nondestructive or only minimally destructive. Also, they must also be able to probe nanometer-thick ultrathin films and layers and capable of imaging the mechanical properties of the sample with nanometer lateral resolution, since, for instance, at these scales blends or copolymers are not uniform, their phases being separated. Atomic force microscopy (AFM) has been proposed as a tool for the development of a number of techniques that match such requirements. In this review, we describe the state of the art of the main AFM-based methods for qualitative and quantitative single-point measurements and imaging of mechanical properties of polymeric thin films, illustrating their specific merits and limitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号