首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
非磁性元素掺杂ZnO稀磁半导体研究进展   总被引:1,自引:1,他引:0       下载免费PDF全文
ZnO基稀磁半导体的磁性来源和机理一直是研究的热点和难点.传统的磁性3d过渡族元素掺杂ZnO容易形成铁磁性的第二相,而非磁性元素掺杂可以很好的避免这一弊端,是研究稀磁半导体磁性来源和机理的理想体系.而且理论计算和实验方面已经报道了室温以上的铁磁性.本文从实验上和理论上综述了非磁性元素掺杂ZnO基稀磁半导体最近的研究进展.  相似文献   

2.
近年来,基于ZnO稀磁半导体在自旋电子器件方面的潜在应用价值,过渡金属掺杂的ZnO材料被广泛研究.但由于p型ZnO材料的制备非常困难,获得具有室温以上居里温度的Mn掺杂p型ZnO基稀磁半导体仍然是个难题.在N-In共掺杂成功实现ZnO薄膜p型掺杂的前期研究基础上,本研究采用超声喷雾热解(USP)法在Si基底上制备了Zn1-x,MnxO系列薄膜样品.X射线衍射表明所有ZnO薄膜样品都具有纤锌矿结构,没有发现其他物相的衍射峰存在.薄膜形貌研究发现,样品中的颗粒分布均匀.磁性测量表明N-Mn-In掺杂的样品显示出室温铁磁性.对N-Mn共掺杂和N-Mn-In掺杂的样品进行热处理后,发现薄膜的铁磁性能与薄膜中的空穴载流子具有直接的关联,这一现象与Mn掺杂的p型ZnO会显示室温铁磁性的理论预测是一致的,并用束缚磁性极化子模型解释了ZnO薄膜的铁磁性来源.  相似文献   

3.
采用水热法制备稀磁半导体材料,样品Zn0.95 Fe0.05O和Zn0.95Fe0.03Ni0.02O的XRD图谱和TEM图谱发现,样品具有纤锌矿结构,形貌为纳米棒状结构.XEDS分析显示,掺杂的Fe和Ni元素进入到了ZnO晶体中.RAMAN光谱表明,Zn2+被Fe2+、Ni2+替换,晶体发生拉曼光谱红移.PL光谱分析发现,在室温条件下,随着Fe2+和Ni2+的掺杂,出现了猝灭现象.VSM测量显示,掺杂样品在室温条件下存在明显的铁磁性,且这种铁磁性属于稀磁半导体的内禀属性.实验结果表明在水热法条件下,获得了ZnO基稀磁半导体材料样品,且样品具有良好的光学和磁学特性,为进一步研究稀磁半导体材料提供了一定的参考.  相似文献   

4.
ZnO基稀磁半导体是目前最有应用前景的自旋电子器件候选材料之一.室温铁磁性材料的可控制备及其磁性起源是目前自旋电子学急待解决的两个基本问题.本文围绕这两个问题对目前国内外关于ZnO基稀磁半导体材料的实验和理论最新研究进行了综述.  相似文献   

5.
本文主要考虑不同掺杂量对水热合成Zn1-xNixO稀磁半导体粉体的影响.采用水热法,以3 mol/L NaOH作为矿化剂,在240℃下,保温24 h左右,进行Ni掺杂(x=0.05,0.1,0.2),合成Zn1-xNixO稀磁半导体晶体.XRD、FE-SEM测试表征晶体的物相组成和晶体形貌,XRD表明所制备的zn0.95Ni0.05O稀磁半导体晶体发育比较完整.通过UV-vis测试进一步说明掺杂的效果.VSM测试表明,所制备的样品在室温下有良好的磁滞回线,表现出铁磁性.  相似文献   

6.
采用水热法,以3 mol/L的KOH作为矿化剂,在260℃下,保温24 h左右,进行Ni掺杂(x=0.1 mol),合成Zn1-xNixO稀磁半导体晶体。XRD测试表征以KOH作为矿化剂能够制备出发育良好的Zn0.9Ni0.1O稀磁半导体晶体,没有其它杂质相的产生。通过UV/Vis测试进一步说明掺杂的效果,掺杂使ZnO的禁带宽度降低至3.18 eV。FE-SEM测试显示所制备的晶体呈现长柱状。VSM测试表明,所制备的样品Zn0.9Ni0.1O在室温下表现出铁磁性。文章采用水热法制备出了具有铁磁性能的稀磁半导体粉体。  相似文献   

7.
采用水热法成功制备了不同浓度的Zn1-xNixO(x =0,0.01,0.05,0.10,0.20)稀磁半导体材料,并利用X射线衍射(XRD)、透射电子显微镜(TEM)、选区电子衍射(SAED)、X射线能量色散分析(XEDS)、拉曼(Raman)光谱和振动样品磁强计(VSM)对其晶体结构、形貌、组成元素和磁学性能等进行表征,实验结果表明,本方法所制备的不同掺杂浓度的Zn1-xNixO稀磁半导体样品具有结晶良好的纤锌矿结构,没有杂峰出现,样品中的Ni2+全部进入ZnO晶格中替代了部分Zn2+的格点位置,生成单一相的Zn1-xNixO,样品形貌都为纳米棒状结构,分散性良好.Zn1-xNixO样品在室温条件下存在明显的铁磁性,饱和磁化强度都随着Ni2+掺杂量的增加而呈现出先增加后减小的趋势,同时样品的单个镍原子的磁矩是逐渐下降的.  相似文献   

8.
基于密度泛函理论研究了CO分子在过渡金属掺杂的石墨烯体系上的吸附性能.考虑了三种吸附构型,优化后获得了稳定的吸附结构.发现,CO分子中的C原子靠近吸附点时,吸附作用较大.比较分析了掺杂不同4d过渡金属元素吸附体系的吸附能、电荷转移及能带结构的变化.过渡金属掺杂可明显提高石墨烯吸附CO气体分子的灵敏性,其中,Mo掺杂石墨烯对CO的吸附效果最好,且吸附后能带结构由金属变为半导体特性.此外,通过分析可知掺杂石墨烯的吸附机制是电荷转移,吸附前后掺杂原子上电荷转移量的变化基本反映了体系的吸附性能.这项研究可以为石墨烯体CO气体传感器的研发提供理论参考.  相似文献   

9.
运用密度泛函理论,计算了Sbzn、Nazn、Sbzn-nNazn掺杂ZnO晶体的稳定性、能带结构和电子态密度.研究发现Sbzn、Nazn、Sbzn-nNazn掺杂ZnO晶体的结构稳定,Sb-Na共掺杂改善了体系的固溶度.能带结构表明,SbZn体系为n型间接带隙半导体材料;NaZn、Sbzn-2NaZn体系为p型半导体材料;Sbzn-NaZn、SbZn-3NaZn体系为本征半导体材料.对p型半导体材料体系的导电性能研究发现,Sbzn-2Nazn体系电导率大于NaZn体系的电导率,即Sbzn-2NaZn掺杂改善了体系的导电性.计算结果为实验制备p型ZnO材料提供了理论指导.  相似文献   

10.
采用固相反应法制备了六方纤锌矿结构Zn1-xAlxO(0≤x≤0.03)系列多晶,探究了Al掺杂对ZnO多晶的微观形貌和热电输运性质的影响.结果表明,Al掺杂促使ZnO晶粒长大联结,晶界减少,x>0.003时出现在晶界分布的ZnAl2O4尖晶石相.掺杂后样品由ZnO的半导体行为转变为电阻率显著下降的金属行为,且x=0.003有最小的室温电阻率~1.7 mΩ·cm,主要由于掺杂使样品载流子浓度和迁移率显著提高,x=0.003时载流子浓度和迁移率为最高,分别为1.05×1021 cm-3和20 cm2/V·s;300 ~900 K下掺杂样品热电势的绝对值和功率因子均随温度升高而增大,x =0.003时有最大的室温功率因子~0.4mW/m·K2.综合得到ZnO中Al掺杂的饱和固溶度x≈0.003.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号