首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 97 毫秒
1.
Both distortion product otoacoustic emissions (DPOAEs) and auditory steady-state responses (ASSRs) provide frequency-specific assessment of hearing. However, each method suffers from some restrictions. Hearing losses above 50 dB HL are not quantifiable using DPOAEs and their performance at frequencies below 1 kHz is limited, but their recording time is short. In contrast, ASSRs are a time-consuming method but have the ability to determine hearing thresholds in a wider range of frequencies and hearing losses. Thus, recording DPOAEs and ASSRs simultaneously at their adequate frequencies and levels could decrease the overall test time considerably. The goal of the present study was to develop a parameter-setting and test-protocol to measure DPOAEs and ASSRs binaurally and simultaneously at multiple frequencies. Ten normal-hearing and 23 hearing-impaired subjects participated in the study. The interaction of both responses when stimulated simultaneously at frequencies between 0.25 and 6 kHz was examined. Two limiting factors need to be kept. Frequency distance between ASSR carrier frequency f(c) and DPOAE primary tone f(2) needs to be at least 1.5 octaves, and DPOAEs may not be measured if the ASSR stimulus level is 70 dB SPL or above. There was a significant correlation between pure-tone and DPOAE/ASSR-thresholds in sensorineural hearing loss ears.  相似文献   

2.
Distortion product otoacoustic emissions (DPOAEs) were measured using sinusoidal amplitude modulation (AM) tones. When one of the primary stimuli (f(1) or f(2), f(1)?< f(2)) was amplitude modulated, a series of changes in the cubic difference tone (CDT) were observed. In the frequency domain, multiple sidebands were present around the CDT and their sizes grew with the modulation depth of the AM stimulus. In the time domain, the CDT showed different modulation patterns between two major signal conditions: the AM tone was used as the f(1) or the f(2). The CDT amplitude followed the AM tone when the f(1) was amplitude modulated. However, when the AM tone acted as the f(2), the CDT showed a more complex modulation pattern with a notch present at the AM tone peak. The relatively linear dependence of CDT on f(1) and the nonlinear relation with f(2) can be explained with a variable gain-control model representing hair cell functions at the DPOAE generation site. It is likely that processing of AM signals at a particular cochlear location depends on whether the hair cells are tuned to the frequency of the carrier. Nonlinear modulation is related to on-frequency carriers and off-frequency carriers are processed relatively linearly.  相似文献   

3.
Otoacoustic emissions are typically reduced in amplitude when broadband noise is presented to the contralateral ear. This contralateral suppression is attributed to activation of the medial olivocochlear system, which has an inhibitory effect on outer hair-cell activity. By studying the effects of contralateral noise on cochlear output at different stages of auditory maturation in human neonates, it is possible to describe the timecourse for development of medial efferent system function in humans. The present study recorded 2 f1-f2 distortion product otoacoustic emissions (DPOAE) in human adults, term and premature neonates at three f2 frequencies: 1500, 3000, and 6000 Hz, using fixed primary tone frequency ratio (f2/f1 = 1.2) and level separation (10 dB, L1 > L2). Average DPOAE growth functions were recorded with and without contralateral broadband noise. Results indicate that contralateral suppression of DPOAEs is absent at 6000 Hz, but present at 1500 and 3000 Hz for all ages. However, DPOAE amplitude from premature neonates was not altered by noise in an adult-like manner; in this age group, DPOAE amplitude was equally likely to by suppressed or enhanced by noise presented contralaterally. Contralateral enhancement may reflect a temporary stage of immaturity in outer hair cell-medial efferent fiber synapses just prior to term birth.  相似文献   

4.
Given that high-frequency hearing is most vulnerable to cochlear pathology, it is important to characterize distortion-product otoacoustic emissions (DPOAEs) measured with higher-frequency stimuli in order to utilize these measures in clinical applications. The purpose of this study was to explore the dependence of DPOAE amplitude on the levels of the evoking stimuli at frequencies greater than 8 kHz, and make comparisons with those data that have been extensively measured with lower-frequency stimuli. To accomplish this, DPOAE amplitudes were measured at six different f2 frequencies (2, 5, 10, 12, 14, and 16 kHz), with a frequency ratio (f2/f1) of 1.2, at five fixed levels (30 to 70 dB SPL) of one primary (either f1 or f2), while the other primary was varied in level (30 to 70 dB SPL). Generally, the level separation between the two primary tones (L1 > L2) generating the largest DPOAE amplitude (referred to as the "optimal level separation") decreased as the level of the fixed primary increased. Additionally, the optimal level separation was frequency dependent, especially at the lower fixed primary tone levels ( < or = 50 dB SPL). In agreement with previous studies, the DPOAE level exhibited greater dependence on L1 than on L2.  相似文献   

5.
The simultaneous presentation of two tones with frequencies f(1) and f(2) causes the perception of several combination tones in addition to the original tones. The most prominent of these are at frequencies f(2)-f(1) and 2f(1)-f(2). This study measured human physiological responses to the 2f(1)-f(2) combination tone at 500 Hz caused by tones of 750 and 1000 Hz with intensities of 65 and 55 dB SPL, respectively. Responses were measured from the cochlea using the distortion product otoacoustic emission (DPOAE), and from the auditory cortex using the 40-Hz steady-state magnetoencephalographic (MEG) response. The perceptual response was assessed by having the participant adjust a probe tone to cause maximal beating ("best-beats") with the perceived combination tone. The cortical response to the combination tone was evaluated in two ways: first by presenting a probe tone with a frequency of 460 Hz at the perceptual best-beats level, resulting in a 40-Hz response because of interaction with the combination tone at 500 Hz, and second by simultaneously presenting two f(1) and f(2) pairs that caused combination tones that would themselves beat at 40 Hz. The 2f(1)-f(2) DPOAE in the external auditory canal had a level of 2.6 (s.d. 12.1) dB SPL. The 40-Hz MEG response in the contralateral cortex had a magnitude of 0.39 (s.d. 0.1) nA m. The perceived level of the combination tone was 44.8 (s.d. 11.3) dB SPL. There were no significant correlations between these measurements. These results indicate that physiological responses to the 2f(1)-f(2) combination tone occur in the human auditory system all the way from the cochlea to the primary auditory cortex. The perceived magnitude of the combination tone is not determined by the measured physiological response at either the cochlea or the cortex.  相似文献   

6.
Measurement of the auditory steady-state response (ASSR) is increasingly used to assess marine mammal hearing. These tests normally entail measuring the ASSR to a sequence of sinusoidally amplitude modulated tones, so that the ASSR amplitude function can be defined and the auditory threshold estimated. In this study, an alternative method was employed, where the ASSR was elicited by an amplitude modulated stimulus whose sound pressure level was slowly varied, or "swept," over a range of levels believed to bracket the threshold. The ASSR amplitude function was obtained by analyzing the resulting grand average evoked potential using a short-time Fourier transform. The suitability of this technique for hearing assessment of bottlenose dolphins and California sea lions was evaluated by comparing ASSR amplitude functions and thresholds obtained with swept amplitude and discrete, constant amplitude stimuli. When factors such as the number of simultaneous tones, the number of averages, and the frequency analysis window length were taken into account, the performance and time required for the swept-amplitude and discrete stimulus techniques were similar. The decision to use one technique over another depends on the relative importance of obtaining suprathreshold information versus the lowest possible thresholds.  相似文献   

7.
A new method for direct pure-tone threshold estimation from input/output functions of distortion product otoacoustic emissions (DPOAEs) in humans is presented. Previous methods use statistical models relating DPOAE level to hearing threshold including additional parameters e.g., age or slope of DPOAE I/O-function. Here we derive a DPOAE threshold from extrapolated DPOAE I/O-functions directly. Cubic 2 f1-f2 distortion products and pure-tone threshold at f2 were measured at 51 frequencies between f2=500 Hz and 8 kHz at up to ten primary tone levels between L2=65 and 20 dB SPL in 30 normally hearing and 119 sensorineural hearing loss ears. Using an optimized primary tone level setting (L1 = 0.4L2 + 39 dB) that accounts for the nonlinear interaction of the two primaries at the DPOAE generation site at f2, the pressure of the 2 f1-f2 distortion product pDP is a linear function of the primary tone level L2. Linear regression yields correlation coefficients higher than 0.8 in the majority of the DPOAE I/O-functions. The linear behavior is sufficiently fulfilled for all frequencies in normal and impaired hearing. This suggests that the observed linear functional dependency is quite general. Extrapolating towards pDP=0 yields the DPOAE threshold for L2. There is a significant correlation between DPOAE threshold and pure-tone threshold (r=0.65, p<0.001). Thus, the DPOAEs that reflect the functioning of an essential element of peripheral sound processing enable a reliable estimation of cochlear hearing threshold up to hearing losses of 50 dBHL without any statistical data.  相似文献   

8.
Distortion product otoacoustic emissions (DPOAEs) are used widely in humans to assess cochlear function. The standard procedure consists of recording the 2f1-f2 DPOAE amplitude as a function of the f2 frequency, using a fixed f2/f1 ratio (DPOAE-gram), close to 1.20. DPOAE amplitude, as recorded in the DPOAE-gram, shows a wide range of values in normal-hearing subjects, which can impair the predictive value of the DPOAE-gram for hearing thresholds. This study is aimed at comparing intersubject variability in 2f1-f2 DPOAE amplitude according to three paradigms: a fixed f2/f1 ratio, such as the DPOAE-gram, a variable ratio DPOAE-gram (f2/f1 adapted to frequency) and an "optimum" DPOAE-gram, where the f2/f1 is adapted both to subject and frequency. The 2f1-f2 DPOAE amplitude has been investigated on 18 normally hearing subjects at ten different f2 frequencies (from 0.75 to 6 kHz), using an f2 fixed, f1 sweep paradigm, and allowed to define, for each frequency, the f2/f1 ratio giving the greatest 2f1-f2 DPOAE amplitude (or optimum ratio). Results showed a large intersubject variability of the optimum ratio, especially at frequencies below 1.5 kHz, and a significant decrease of the optimum ratio with frequency. The optimum DPOAE-gram was underestimated by up to 5.8 dB on average (up to 14.9 dB for an individual subject) by the fixed ratio DPOAE-gram, and by up to 3 dB on average (up to 10.6 dB for an individual subject) by the variable ratio DPOAE-gram. Intersubject variability was slightly but significantly reduced in the optimum DPOAE-gram versus the fixed-ratio DPOAE-gram. Lastly, correlations between tone-burst evoked otoacoustic emission (TBOAE) amplitudes and maximum DPOAE amplitudes were significantly greater than correlations between TBOAE amplitudes and fixed-ratio DPOAE amplitudes.  相似文献   

9.
Frequency modulation detection limens (FMDLs) were measured for carrier frequencies (f(c)) of 1000, 4000, and 6000 Hz, using modulation frequencies (f(m)) of 2 and 10 Hz and levels of 20 and 60 dB sensation level (SL), both with and without random amplitude modulation (AM), applied in all intervals of a forced-choice trial. The AM was intended to disrupt excitation-pattern cues. At 60 dB SL, the deleterious effect of the AM was smaller for f(m) = 2 than for f(m) = 10 Hz for f(c) = 1000 and 4000 Hz, respectively, while for f(c) = 6000 Hz the deleterious effect was large and similar for the two values of f(m). This is consistent with the idea that, for f(c) below about 5000 Hz and f(m) = 2 Hz, frequency modulation can be detected via changes in phase locking over time. However, at 20 dB SL, the deleterious effect of the added AM for f(c) = 1000 and 4000 Hz was similar for the two values of f(m), while for f(c) = 6000 Hz, the deleterious effect of the AM was greater for f(m) = 10 than for f(m) = 2 Hz. It is suggested that, at low SLs, the auditory filters become relatively sharp and phase locking weakens, so that excitation-pattern cues influence FMDLs even for low f(c) and low f(m).  相似文献   

10.
Biasing of the cochlear partition with a low-frequency tone can produce an amplitude modulation of distortion product otoacoustic emissions (DPOAEs) in gerbils. In the time domain, odd- versus even-order DPOAEs demonstrated different modulation patterns depending on the bias tone phase. In the frequency domain, multiple sidebands are presented on either side of each DPOAE component. These sidebands were located at harmonic multiples of the biasing frequency from the DPOAE component. For odd-order DPOAEs, sidebands at the even-multiples of the biasing frequency were enhanced, while for even-order DPOAEs, the sidebands at the odd-multiples were elevated. When a modulation in DPOAE magnitude was presented, the magnitudes of the sidebands were enhanced and even greater than the DPOAEs. The amplitudes of these sidebands varied with the levels of the bias tone and two primary tones. The results indicate that the maximal amplitude modulations of DPOAEs occur at a confined bias and primary level space. This can provide a guide for optimal selections of signal conditions for better recordings of low-frequency modulated DPOAEs in future research and applications. Spectral fine-structure and its unique relation to the DPOAE modulation pattern may be useful for direct acquisition of cochlear transducer nonlinearity from a simple spectral analysis.  相似文献   

11.
The results of studies of the physiological vulnerability of distortion-product otoacoustic emissions (DPOAEs) suggest that the DPOAE at 2f1-f2 in vertebrate ears is generated by more than one source. The principal aims of the present study were to provide independent evidence for the existence of more than one DPOAE source, and to determine the contributions of each to the ear-canal 2f1-f2 signal. To accomplish these aims, specific stimulus parameters were separately and systematically varied to provide detailed parametric information regarding 2f1-f2 DPOAE amplitude and phase in normal ears of awake rabbits. The findings indicate that two discrete sources, demonstrating differential dependence on stimulus parameters, dominate the generation of the 2f1-f2 DPOAE. One source of distortion is dominant above 60-70 dB SPL at moderate primary-frequency separations, and at all stimulus levels when the primary tones are closely spaced. The other source is dominant below 60-70 dB SPL at moderate primary-frequency separations, and may be dominant at all stimulus levels when the primary tones are widely separated in frequency. The results suggest that by varying stimulus parameters, it may be possible to independently study the two generator mechanisms.  相似文献   

12.
Frequency modulation detection limens (FMDLs) were measured for five hearing-impaired (HI) subjects for carrier frequencies f(c) = 1000, 4000, and 6000 Hz, using modulation frequencies f(m) = 2 and 10 Hz and levels of 20 dB sensation level and 90 dB SPL. FMDLs were smaller for f(m) = 10 than for f(m) = 2 Hz for the two higher f(c), but not for f(c) = 1000 Hz. FMDLs were also determined with additional random amplitude modulation (AM), to disrupt excitation-pattern cues. The disruptive effect was larger for f(m) = 10 than for f(m) = 2 Hz. The smallest disruption occurred for f(m) = 2 Hz and f(c) = 1000 Hz. AM detection thresholds for normal-hearing and HI subjects were measured for the same f(c) and f(m) values. Performance was better for the HI subjects for both f(m). AM detection was much better for f(m) = 10 than for f(m) = 2 Hz. Additional tests showed that most HI subjects could discriminate temporal fine structure (TFS) at 800 Hz. The results are consistent with the idea that, for f(m) = 2 Hz and f(c) = 1000 Hz, frequency modulation (FM) detection was partly based on the use of TFS information. For higher carrier frequencies and for all carrier frequencies with f(m) = 10 Hz, FM detection was probably based on place cues.  相似文献   

13.
14.
The purpose of the present study was to determine the effect of primary-tone level variation, L2--L1, on the amplitude of distortion-product otoacoustic emissions (DPOAEs). The DPOAE at the frequency 2f1--f2 (f2 greater than f1) was measured in 20 ears of ten normally hearing subjects. Acoustic distortion products were generated by primaries f1 and f2 with geometric mean frequencies of 1, 2, and 4 kHz. The f2/f1 ratios were 1.25 (1 kHz), 1.23 (2 kHz), and 1.21 (4 kHz). The primary-tone level L1 was kept constant at either 65 or 75 dB SPL while the second primary-tone level L2 was varied between 20 and 90 dB SPL in 5-dB steps. The level differences L2--L1 generating maximal DPOAE amplitudes depended on L1 and on the geometric mean frequency of f1 and f2. There were large interindividual differences. Overall, the L2--L1 evoking maximal mean DPOAE amplitudes was --10 dB for geometric mean frequencies of 1 and 2 kHz with both L1 = 65 dB SPL and L1 = 75 dB SPL. For 4 kHz, L2-L1 was --5 dB with L1 = 65 dB SPL and 0 dB with L1 = 75 dB SPL. The mean slopes of the DPOAE growth functions in the initial linearly increasing portions were steeper at higher stimulus frequencies, increasing from 0.52 at 1 kHz to 0.72 at 4 kHz for L1 = 65 dB SPL and from 0.48 at 1 kHz to 0.72 at 4 kHz for L1 = 75 dB SPL.  相似文献   

15.
Evidence of the compressive growth of basilar-membrane displacement can be seen in distortion-product otoacoustic emission (DPOAE) levels measured as a function of stimulus level. When the levels of the two stimulus tones (f1 and f2) are related by the formula L1 = 39 dB + 0.4 x L2 [Kummer et al., J. Acoust. Soc. Am. 103, 3431-3444 (1998)] the shape of the function relating DPOAE level to L2 is similar (up to an L2 of 70 dB SPL) to the classic Fletcher and Munson [J. Acoust. Soc. Am. 9, 1-10 (1933)] loudness function when plotted on a logarithmic scale. Explicit estimates of compression have been derived based on recent DPOAE measurements from the laboratory. If DPOAE growth rate is defined as the slope of the DPOAE I/O function (in dB/dB), then a cogent definition of compression is the reciprocal of the growth rate. In humans with normal hearing, compression varies from about 1 at threshold to about 4 at 70 dB SPL. With hearing loss, compression is still about 1 at threshold, but grows more slowly above threshold. Median DPOAE I/O data from ears with normal hearing, mild loss, and moderate loss are each well fit by log functions. When the I/O function is logarithmic, then the corresponding compression is a linear function of stimulus level. Evidence of cochlear compression also exists in DPOAE suppression tuning curves, which indicate the level of a third stimulus tone (f3) that reduces DPOAE level by 3 dB. All three stimulus tones generate compressive growth within the cochlea; however, only the relative compression (RC) of the primary and suppressor responses is observable in DPOAE suppression data. An RC value of 1 indicates that the cochlear responses to the primary and suppressor components grow at the same rate. In normal ears, RC rises to 4, when f3 is an octave below f2. The similarities between DPOAE and loudness compression estimates suggest the possibility of predicting loudness growth from DPOAEs; however, intersubject variability makes such predictions difficult at this time.  相似文献   

16.
Steady-state evoked potentials were measured from unanesthetized chinchillas both before and after carboplatin-induced selective inner hair cell loss. Recordings were made from both the inferior colliculus (IC) and the auditory cortex (AC). The steady-state potential was measured in the form of the envelope following response (EFR), obtained by presenting a two-tone stimulus (f1 = 2000 Hz; f2 = 2020, 2040, 2080, 2160, or 2320 Hz), and measuring the magnitude of the Fourier coefficient at the f2-f1 difference frequency. From the IC, precarboplatin, EFR amplitude vs difference tone frequency showed a bandpass pattern, with maximum amplitude at either 160 or 80 Hz, depending upon stimulus level. Postcarboplatin, the preferred difference frequency was 80 Hz for all stimulus levels. From the AC, EFR amplitude versus difference tone frequency also showed a bandpass pattern, with the maximum amplitude at 80 Hz both pre- and postcarboplatin. EFR amplitude from the IC was decreased for some conditions postcarboplatin, while the amplitude from the AC showed no significant change.  相似文献   

17.
In recent years, evidence has accumulated in support of a two-source model of distortion product otoacoustic emissions (DPOAEs). According to such models DPOAEs recorded in the ear canal are associated with two separate sources of cochlear origin. It is the interference between the contributions from the two sources that gives rise to the DPOAE fine structure (a pseudoperiodic change in DPOAE level or group delay with frequency). Multiple internal reflections between the base of the cochlea (oval window) and the DP tonotopic place can add additional significant components for certain stimulus conditions and thus modify the DPOAE fine structure. DPOAEs, at frequency increments between 4 and 8 Hz, were recorded at fixed f2/f1 ratios of 1.053, 1.065, 1.08, 1.11, 1.14, 1.18, 1.22, 1.26, 1.30, 1.32, 1.34, and 1.36 from four subjects. The resulting patterns of DPOAE amplitude and group delay (the negative of the slope of phase) revealed several previously unreported patterns in addition to the commonly reported log sine variation with frequency. These observed "exotic" patterns are predicted in computational simulations when multiple internal reflections are included. An inverse FFT algorithm was used to convert DPOAE data from the frequency to the "time" domain. Comparison of data in the time and frequency domains confirmed the occurrence of these "exotic" patterns in conjunction with the presence of multiple internal reflections. Multiple internal reflections were observed more commonly for high primary ratios (f2/f1 > or = 1.3). These results indicate that a full interpretation of the DPOAE level and phase (group delay) must include not only the two generation sources, but also multiple internal reflections.  相似文献   

18.
The growth of distortion product otoacoustic emission (DPOAE) suppression follows a systematic, frequency-dependent pattern. The pattern is consistent with direct measures of basilar-membrane response growth, psychoacoustic measures of masking growth, and measures of neural rate growth. This pattern has its basis in the recognized nonlinear properties of basilar-membrane motion and, as such, the DPOAE suppression growth paradigm can be applied to human neonates to study the maturation of cochlear nonlinearity. The objective of this experiment was to investigate the maturation of human cochlear nonlinearity and define the time course for this maturational process. Normal-hearing adults, children, term-born neonates, and premature neonates, plus a small number of children with sensorineural hearing loss, were included in this experiment. DPOAE suppression growth was measured at two f2 frequencies (1500 and 6000 Hz) and three primary tone levels (55-45, 65-55, and 75-65 dB SPL). Slope of DPOAE suppression growth, as well as an asymmetry ratio (to compare slope for suppressor tones below and above f2 frequency), were generated. Suppression threshold was also measured in all subjects. Findings indicate that both term-born neonates and premature neonates who have attained term-like age, show non-adult-like DPOAE suppression growth for low-frequency suppressor tones. These age effects are most evident at f2 = 6000 Hz. In neonates, suppression growth is shallower and suppression thresholds are elevated for suppressor tones lower in frequency than f2. Additionally, the asymmetry ratio is smaller in neonates, indicating that the typical frequency-dependent pattern of suppression growth is not present. These findings suggest that an immaturity of cochlear nonlinearity persists into the first months of postnatal life. DPOAE suppression growth examined for a small group of hearing-impaired children also showed abnormalities.  相似文献   

19.
Across-critical-band processing of amplitude-modulated tones   总被引:2,自引:0,他引:2  
Two experiments using two-tone sinusoidally amplitude-modulated stimuli were conducted to assess cross-channel effects in processing low-frequency amplitude modulation. In experiment I, listeners were asked to discriminate between two sets of two-tone amplitude-modulated complexes. In one set, the modulation phase of the lower frequency carrier tone was different from that of the upper frequency carrier tone. In the other stimulus set, both amplitude-modulated carriers had the same modulator phase. The amount of phase shift required to discriminate between the two stimulus sets was determined as a function of the separation between the two carriers, modulation depth, and modulation frequency. Listeners could discriminate a 50 degrees-60 degrees phase shift between the modulated envelopes for tones separated by more than a critical band. In experiment II, the modulation depth required to detect modulation of a probe carrier was measured in the presence of an amplitude-modulated masker. The threshold for detecting probe modulation was determined as a function of the separation between the masker and probe carriers, the phase difference between the masker and probe modulators, and masker modulation depth (in all conditions, the rate of probe and masker modulation was 10 Hz). The threshold for detecting probe modulation was raised substantially when the masker tone was also modulated. The results are consistent with theories suggesting that amplitude modulation helps form auditory objects from complex sound fields.  相似文献   

20.
This study compared the ability of 5 listeners with normal hearing and 12 listeners with moderate to moderately severe sensorineural hearing loss to discriminate complementary two-component complex tones (TCCTs). The TCCTs consist of two pure tone components (f1 and f2) which differ in frequency by delta f (Hz) and in level by delta L (dB). In one of the complementary tones, the level of the component f1 is greater than the level of component f2 by the increment delta L; in the other tone, the level of component f2 exceeds that of component f1 by delta L. Five stimulus conditions were included in this study: fc = 1000 Hz, delta L = 3 dB; fc = 1000 Hz, delta L = 1 dB; fc = 2000 Hz, delta L = 3 dB; fc = 2000 Hz, delta L = 1 dB; and fc = 4000 Hz, delta L = 3 dB. In listeners with normal hearing, discrimination of complementary TCCTs (with a fixed delta L and a variable delta f) is described by an inverted U-shaped psychometric function in which discrimination improves as delta f increases, is (nearly) perfect for a range of delta f's, and then decreases again as delta f increases. In contrast, group psychometric functions for listeners with hearing loss are shifted to the right such that above chance performance occurs at larger values of delta f than in listeners with normal hearing. Group psychometric functions for listeners with hearing loss do not show a decrease in performance at the largest values of delta f included in this study. Decreased TCCT discrimination is evident when listeners with hearing loss are compared to listeners with normal hearing at both equal SPLs and at equal sensation levels. In both groups of listeners, TCCT discrimination is significantly worse at high center frequencies. Results from normal-hearing listeners are generally consistent with a temporal model of TCCT discrimination. Listeners with hearing loss may have deficits in using phase locking in the TCCT discrimination task and so may rely more on place cues in TCCT discrimination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号