首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The bimolecular single collision reaction potential energy surface of CN radical with ketene (CH2CO) was investigated by means of B3LYP and QCISD(T) methods. The calculated results indicate that there are three possible channels in the reaction. The first is an attack reaction by the carbon atom of CN at the carbon atom of the methylene of CH2CO to form the intermediate NCCH2CO followed by a rupture reaction of the C-C bond combined with -CO group to the products CH2CN CO. The second is a direct addition reaction between CN and CH2CO to form the intermediate CH2C(O)CN followed by its isomerization into NCCH2CO via a CN-shift reaction, and subsequently, NCCH2CO dissociates into CH2CN CO through a CO-loss reaction. The last is a direct hydrogen abstraction reaction of CH2CO by CN radical. Because of the existence of a 15.44 kJ/mol reaction barrier and higher energy of reaction products, the path can be ruled out as an important channel in the reaction kinetics. The present theoretical computation results, which give an available suggestion on the reaction mechanism, are in good agreement with previous experimental studies.  相似文献   

2.
The calculation of temperature vs. time sequences to palliate catalyst deactivation in an integral reactor has been studied either by maintaining constant the conversion at the reactor outlet in a simple reaction or by maintaining constant the concentration of a given component at the outlet in a complex reaction system. The experimental systems studied, which are a simple one (dehydration of 2-ethylhexanol) and a complex one (isomerization of cis-butene), have kinetic models of the Langmuir-Hinshelwood-Hougen-Watson type for the main reaction and deactivation, with deactivation by coke dependent on the concentration of the reaction components. In the reaction of dehydration of 2-ethylhexanol deactivation occurs in parallel with the main reaction and in the isomerization of cis-butene deactivation occurs in series-parallel with the main reaction. A parametric study has been carried out for both reaction systems. The sequences calculated have been experimentally proven in an automated reaction apparatus.  相似文献   

3.
The bulk phase kinetics of an epoxy (DGEBA) /amine (DDS) thermoset have been studied using DSC, FTIR, and 13C-NMR. In the absence of catalyst, the reaction was found to involve a main exothermic reaction between epoxide and amine hydrogen and a side reaction between tertiary amine formed in the main reaction and epoxide. The main reaction was exothermic while the side reaction had no discernable exotherm. Etherification did not occur to any significant extent. Since only the main reaction is exothermic, DSC was very useful for studying the main reaction kinetics. FTIR was used for determining whether epoxide and amine hydrogen were consumed at different rates as a way of following the side reaction. An IR band previously unused by other investigators was used to monitor the amine hydrogen concentration. NMR confirmed the above mechanism by identifying the formation of a quaternary ammonium ion/alkoxide ion pair as a reaction product of tertiary amine and epoxide. This mechanism has been successfully fit to a rate law valid over the entire extent of reaction. The rate constant for the epoxy/amine addition reaction was found to depend on hydroxide concentration (extent), reaction temperature, and glass transition temperature and included contributions from uncatalyzed and autocatalyzed parts. The side reaction (quaternary ammonium ion formation) formed weak bonds which did not affect the overall system Tg. Both reactions were second order. The rate constants for the main reaction first increase with increasing extent due to autocatalysis by hydroxide before decreasing due to the diffusion limit caused by gelation and vitrification. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
The reaction between dibutyl tin maleate or dibutyl tin bisbutylmaleate and chlorohexene as a model compound for allylic chloride in PVC was studied at 80°C in dichlorobutane solution. From kinetic studies by gas chromatographic analysis of the reaction medium, and also spectroscopic data (infra-red and 1H NMR) it may be concluded that the main reaction is the substitution reaction which produces mono- and dihexenyl esters, as well as mixed diesters of maleic acid. The elimination reaction plays a minor rôle. Both activities are related to their Lewis acidities. The Diels-Alder condensation between maleates and hexadiene is not observed as a side reaction in these conditions; the main side reaction is the decomposition of monoesters of maleic acid (which is produced by the elimination reaction after one or two steps) into an alcohol and maleic anhydride—a reaction which can be catalysed by organo-tin chlorides. A Diels-Alder reaction between maleic anhydride and hexadiene takes place. The alcohol produced in the side reaction mentioned above may take part in a transesterification reaction with the organo-tin maleate and that reaction probably provides the best explanation of the earlier observation of Frye et al.,1 according to which there is at least temporary retention of reactivity of tin labelled organo-tin maleate by PVC.  相似文献   

5.
The kinetics of the thermal rearrangement 4‐ethyl‐3,5‐diphenyl‐4H‐1,2,4‐triazoles, 1 , to the corresponding 1‐ethyl‐3,5‐diphenyl‐1‐alkyl‐1H‐1,2,4‐triazoles, 2 , was studied in 15‐Crown‐5 and octadecane at 330 °C. The reaction was very slow in octadecane but proceed well in 15‐Crown‐5. The reaction order for the reaction was not constant but changed from an initial second order rate law towards a first order rate law as the reaction progressed. This was confirmed by the concentration dependent reaction order, nc, which was larger than the time dependent rate law, nt. The rationale for the observation was, that at high substrate concentrations the reaction order was second order while at lower concentrations a competing solvent assisted reaction plays an increasing important role. The data were in agreement with a mechanism in which the neutral 4‐alkyl‐triazoles in an intermolecular nucleophilic displacement reaction form a triazolium triazolate, which in a subsequent nucleophilic reaction gives the observed product.  相似文献   

6.
脯氨酸催化的不对称有机反应   总被引:1,自引:0,他引:1  
郑欣  王永梅 《化学进展》2008,20(11):1675-1686
脯氨酸作为一种结构简单、商品化的、廉价小分子手性催化剂,在多种不对称催化反应中表现出非常好的催化性能,本文综述了近年来脯氨酸直接催化的不对称有机反应涉及Aldol反应,Mannich反应,Michael反应,Diels-Alder反应,直接α-胺化反应,α-氧胺化反应,Baylis-Hillman反应,还原反应和氧化反应的进展并展望了其应用前景。  相似文献   

7.
The hydrolysis of cornstarch using a highly active solid acid catalyst, a carbon material bearing SO3H, COOH and OH groups, was investigated at 353–393 K through an analysis of variance (ANOVA) and an artificial neural network (ANN). ANOVA revealed that reaction temperature and time are significant parameters for the catalytic hydrolysis of starch. The ANN model indicated that the reaction efficiency reaches a maximum at an optimal condition (water, 0.8–1.0 mL; starch, 0.3–0.4 g; catalyst, 0.3 g; reaction temperature, 373 K; reaction time, 3 h). The relationship between the reaction and these parameters is discussed on the basis of the reaction mechanism.  相似文献   

8.
提出反应类等键方法并用于高温燃烧机理中一类重要反应——烷基自由基β位裂解反应的反应势垒和速率常数的精确校正计算. 通过10种不同从头算水平对类反应中5个代表反应的反应势垒的计算发现, 用反应类等键反应方法和直接从头算方法获得的5 个代表反应的反应势垒最大绝对偏差的平均值分别为5.32 和16.16 kJ·mol-1, 表明反应类等键反应方法计算的反应势垒对不同水平从头算方法的依赖性小, 可在较低从头算水平计算得到精确的反应势垒, 解决大分子体系反应势垒的精确计算问题. 此外应用反应类等键反应方法在BHandHLYP/cc-pVDZ 从头算水平计算了3 个代表反应的速率常数, 并与文献报道的实验值进行了比较, 其在500-2000 K温度区间内计算速率常数与实验速率常数中较大值与较小值的比值kmax/kmin的平均值为1.67, 最大值也仅有2.49. 表明应用反应类等键反应方法在较低从头算水平即可对同类反应的速率常数进行精确计算.最后在BHandHLYP/cc-pVDZ从头算水平用反应类等键反应方法计算了13个烷基自由基β位裂解反应的速率常数.  相似文献   

9.
研究了无溶剂条件下纳米Cu2O催化二苯甲烷二氨基甲酸苯酯(MDPC)热分解制备二苯甲烷二异氰酸酯(MDI),考察了纳米Cu2O的制备条件与反应条件对MDPC热分解反应性能的影响.结果表明,水解法制备的纳米Cu2O在Ar中于300℃焙烧2h,其催化性能最佳;最佳的反应条件为Cu2O用量为原料总重的0.06%,反应温度220℃,反应压力0.6kPa,反应时间12min,此时MDPC转化率达到99.8%,MDI选择性86.2%.  相似文献   

10.
The thermal decomposition of trifluoroacetaldehyde at temperatures f 471 to 519°C has been studied by measuring the rates of formation of CF3H and C2F6. It is concluded that the high-pressure reaction mechanism involves a Rice-Herzfeld reaction scheme with first-order initiation and second-order termination via CF3 combination. However, a falloff in reaction rates is observed at pressures below 100 mmHg. The Arrhenius parameters of the three rate constants corresponding to the overall reaction, the initiation reaction, and an abstraction reaction have been evaluated.  相似文献   

11.
A Grignard reaction of reactantA and phenyl magnesium chloride is used to make a pharmaceutical intermediate at the production scale. The elimination of protecting groups onA was proposed as a means to reduce synthesis costs. This new synthesis route, however, had process efficiency and safety issues associated with it: (1) build-up of unreactedA in the reactor, (2) influence ofA's particle size on the reaction rate, (3) the sensitivity of the reaction rate to the reaction temperature and to the (changing) solvent composition, and (4) the highly exothermic nature of the reaction.The Mettler RC1 Reaction Calorimeter was used to quantify the influence of solvent composition, temperature, and particle size on the reaction rate. Results indicated a dramatic effect of solvent composition and reaction temperature on the reaction rate; for example, over a temperature range of just 30°C, the reaction time decreased from more than a day to just a few minutes. At such high reaction rates, the vessel jacket could not remove the reaction heat sufficiently and the internal temperature rose adiabatically.These results were used to make process design and operation recommendations for safe and efficient plant operation with this modified Grignard reaction system.The authors would like to thank the following for their assistance in this work: E. Daugs for preparing the Grignard reagents, K.L. Gonzales for her help in running the experiments and in the subsequent data work-up; P.M. Russell for his assistance in the design of the slurry addition assembly, and K. Chritz and J. Engel for performing the HPLC analyses of the samples.  相似文献   

12.
The kinetics of the pozzolanic reaction of enriched kaolin from the “Senovo” deposit (Bulgaria) with lime is the object of this article. The kaolin contains kaolinite as a major clay mineral as well as admixtures of quartz and illite. The experimental data of pozzolanic activity at temperatures of 100 and 23 °C are obtained for different reaction times. The reaction degrees of kaolinite and lime at 100 °C are determined from the pozzolanic activity data using a powder X-ray diffraction analysis. The kinetic analysis is performed by joint presentation of theoretical and experimental data in dimensionless coordinates having in mind the influence of particle size distribution on the reaction rate. It is found by the kinetic analysis that the rate of entire reaction is limited by the rate of chemical reaction on the reaction surface up to degree of reaction near to 0.4. The rate of penetration of the chemical reaction into the kaolinite particles for this area—from the beginning to degree of reaction 0.4, is determined to be equal to 2.10−11 m/s.  相似文献   

13.
The C–C coupling reaction of N-electron withdrawing group (EWG) protected amides with coupling partners is one of the most important methods for C–C bond formation at the α-position of amides to directly give α-substituted amides. Of the four reactions, namely, the reaction via the generation of carbanion with an electrophile, that via the generation of carbon radical with a radical donor, that via the generation of iminium ion species with a nucleophile (oxidative coupling reaction), and that using a transition metal carbenoid, the oxidative coupling reaction presents a challenge although the reaction products are very useful for the transformation of a wide range of nitrogen-containing derivatives. In this review, recent developments in the oxidative coupling reaction of N-EWG protected amides with nucleophiles are summarized with focus on the reaction using a transition metal, the transition-metal-free reaction, the enantioselective reaction using a chiral catalysts, and the organocatalyzed oxidative coupling reaction.  相似文献   

14.
Polycarbonate (PC)/acrylonitrile‐butadiene‐styrene (ABS) polymer alloy/montmorillonite (MMT) nanocomposites were prepared using a direct melt intercalation technique. The pyrolytic degradation and the thermo‐oxidative degradation of the polymer alloy and the nanocomposites were studied by thermogravimetric analysis (TGA). The kinetic evaluations were performed by the model‐free kinetic analysis and the multivariate non‐linear regression. Apparent kinetic parameters for the overall degradation were calculated. The results show that PC/ABS/MMT nanocomposites have high thermal stability and low flammability. Their pyrolytic degradation and the thermo‐oxidative degradation model are different. The pyrolytic degradation reaction of the polymer is a two‐step parallel reaction model: nth‐order reaction model, and ath‐degree autocatalytic reaction with an nth‐order reaction autocatalytic reaction, whereas the thermal oxidative degradation reaction of the polymer is a two‐step following reaction model: A → B → C of nth‐order reaction model, and autocatalytic reaction model. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
The [2 + 2] photocycloaddition between an electronically excited carbonyl compound and an alkene leading to oxetanes (Paternò-Büchi reaction) is one of the most investigated organic photochemical reaction. Regio-, stereo- and site selectivities are discussed as a consequence of the reaction mechanism. Spin multiplicity and electron transfer have a significant impact on the outcome of the reaction. Typical carbonyl and alkene reaction partners are presented indicating scope and limitation of the reaction. The Paternò-Büchi reaction possesses particular interest for being applied to organic synthesis, considering the difficulty for non-photochemical reactions to obtain oxetanes, with or without stereoselectivity. Mechanistic details are particularly focused. It has been applied as key step in various multi-step syntheses.  相似文献   

16.
N-Alkyloxazolidines react in a multicomponent reaction with carboxylic acids and isocyanides to give N-acyloxyethylamino acid amides. The previously reported reaction conditions were improved using a design of experiments approach (DoE). Under the optimised conditions, good yields of the N-acyloxyethylamino acid amide products are obtained both via a three- or four-component approach from N-alkylethanolamines, aldehydes/ketones, isocyanides and carboxylic acids. The reaction of oxazolidines without a nitrogen substituent was found to give either the expected Ugi products or the N-acyloxyethylamino acid amides depending on the choice of reaction conditions. Optimised reaction conditions were also developed for the ring-expansion of oxazolidines to morpholin-2-ones via reaction with an isocyanide followed by hydrolysis. The mechanistic pathway of the multicomponent reaction was briefly investigated using an 18O labelling experiment. The carboxylic acid component can be replaced by a range of other acidic nucleophiles including thiobenzoic acid, thiophenol or 5-phenyltetrazole, which are incorporated via an alternative pathway. These latter reactions can also be applied to 2-aminotetrahydrofurans, 2-aminotetrahydropyrans or 4-hydroxybut-2-one, further extending the structural diversity of the multicomponent reaction products.  相似文献   

17.
The thermochemical properties of reaction N++H2→NH++H have been computed under Titan's atmosphere conditions. It is observed that this reaction is an endothermic reaction and cannot proceed forward spontaneously under low temperature. The rate for this reaction at 300 K has been calculated as k=4.16×10?10 cm3·mol?1·s?1. The reaction barrier is 109.847 kJ·mol?1 at 298.15 K, which is probably too high to allow this reaction to occur in the atmosphere of Titan. The kinetic properties of the reaction are calculated at a pressure of 90 Pa and a temperature ranging from 1 to 5000 K. It is found that this reaction has a very low reaction rate under low temperature in Titan's atmosphere and that the rate decreases drastically with decreasing temperature. This result should be applicable to interstellar place with low temperature values. The results are compared with those obtained from experiments.  相似文献   

18.
The diastereoselective aldol-type reaction of a γ-pyrone via a sodium anion has been developed. This reaction is useful for synthesizing γ-pyrone-containing natural products. Also, we applied the Mukaiyama aldol-type reaction of silyl enol ether of γ-pyrone by using TiCl4. This Mukaiyama aldol-type reaction of γ-pyrone indicated higher anti-aldol selectivity than the aldol-type reaction of a γ-pyrone with NaHMDS.  相似文献   

19.
The H + F2 → HF + F reaction on ground state potential energy surface is investigated using the quantum mechanical real wave packet and Flux analysis method based on centrifugal sudden approximation. The initial state selected reaction probabilities for total angular momentum J = 0 have been calculated by both methods while the probabilities for J > 0 have been calculated by Flux analysis method. The initial state selected reaction probabilities, integral cross sections and rate coefficients have been calculated for a broad range of collision energy. The results show a large rotational enhancement of the reaction probability. Some resonances were seen in the state‐to‐state reaction probabilities while state‐to‐all reaction probabilities and the reaction cross section do not manifest any oscillations and the initial state selected reaction rate constants are sensitive to the temperature. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

20.
The reaction between polycaprolactone and 1,5-naphtalene diisocyanate has been investigated in solvents with different dielectric constants and hydrogen bonding powers (toluene, ethyl acetate, ethyl methyl ketone), and in the same solvents with the addition of a catalytic amount of dimethyl sulfoxide (DMSO). The reaction was considered to proceed over two steps, the reaction of the first NCO group being faster. The course of the reaction was measured by titration of the unreacted NCO groups, 1H- and 13C-NMR spectroscopy, and size exclusion chromatography. By titration only the overall reaction order and reaction rate constants could be determined. DMSO accelerated the reaction in all three solvents, which was explained by the stabilization of the activation complex by DMSO. Both steps of the reaction could be specified by NMR spectroscopy. The ratio between the reaction rate constants for the first and the second step decreased with the increased hydrogen bonding strength of the solvent and with DMSO. By SEC only the reaction of the first NCO group could be determined due to the low resolution for higher molar mass reaction products with a broad distribution. The values obtained for the first step reaction rate constants were in good agreement with NMR values. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号