首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The geometrical characteristics of jets injected through an opening in a flat plate into an oncoming supersonic flow have been studied on a number of occasions [1, 3]. However, the results were analyzed under different suppositions about the important dimensionless parameters. In [1], the degree of underexpansion of the jet, characterized by n = p a /p, was regarded as decisive; in [3], the experimental points were plotted against the relative dynamic head a u2 a /(u2 ) of the jet. In the present paper, dimensional considerations are used to determine the dimensionless parameters which influence the flow field when an injected jet interacts with an oncoming supersonic gas flow. The influence of these determining dimensionless parameters on the depth of penetration of injected jets into a flow was investigated experimentally. It is shown that the relative depth of penetration is determined basically by the relative specific impulse of the jet, the injection angle, and the shape of the blowing nozzle section.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 151–154, July–August, 1980.  相似文献   

3.
The results of an experimental investigation of supersonic Mach 2.5 flow past an axisymmetric cylindrical model body with a rectangular annular cut-out on its lateral surface are presented. The evolution of the structure of the flow over the cavity with continuous variation in the angle of attack is studied on the basis of the data of flow visualization and balance measurements on the range of the relative cavity lengths L/h from 8 to 16. Hysteresis phenomena are revealed and analyzed.  相似文献   

4.
5.
K. Mohri  R. Hillier 《Shock Waves》2011,21(3):175-191
Laminar and turbulent computations are presented for annular rectangular-section cavities, on a body of revolution, in a Mach 2.2 flow. Unsteady ‘open cavity flows’ result for all laminar computations for all cavity length-to-depth ratios, L/D (1.33, 10.33, 11.33 and 12.33). The turbulent computations produce ‘closed cavity flows’ for L/D of 11.33 and 12.33. Surface pressure fluctuations at the front corner of the L/D = 1.33 cavity are periodic in some cases depending on the cavity length and depth, the boundary layer at the cavity front lip and the cavity scale. The turbulent computations are supported by experimental schlieren images, obtained using a spark light source, and time-averaged surface pressure data.  相似文献   

6.
The effect of angles of attack in the interval 0 40° on the flow pattern and the aerodynamic characteristics of a body of power-law shape (equation of the generator in the cylindrical coordinate system r=zn, n=0.125) is investigated for supersonic flow without injection and with intense subsonic localized injection from the surface. As a result of numerical calculations it is established that the use of Newton's theory for determining the coordinates of the gas stagnation point behind the shock in flow past an impermeable body of the shape in question leads to serious errors, and an expression for determining the location of this point is given. It is shown that for three-dimensional flow the flow pattern and the surface pressure distribution are sharply different from the case=0. It is established that on the parameter interval in question intense injection considerably reduces the aerodynamic drag without loss of static stability, which is important in connection with the solution of the problem of gas-stable aircraft control.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 95–101, September–October, 1987.  相似文献   

7.
The flowfield over a blunt-nosed cylinder was examined experimentally at a low subsonic speed for Re=1.88×105 and angles of attack up to 40°. Velocity measurements were carried out (employing a seven-hole Pitot tube) as well as wall static pressure and wall shear-stress measurements. Surface flow visualization was applied using liquid crystals and a mixture of oil–TiO2. For all the examined cases no flow asymmetries were found. For high angles of attack (20° and above) a separation “bubble” appears at the leeside of the nose area (streamwise flow separation). The basic feature of the circumferential pressure distribution at the after body area for these angles of attack is a plateau close to the suction peak and a fast recovery next to it. One streamwise vortex on each side of the symmetry plane is formed as well as a separation bubble about 90° far from this plane, where the cross-flow primary separation line is located. Each cross-flow primary separation line starts at the leeside nose area and moves towards the windward side along the cylindrical after body. The space between the two primary separation lines close to the wall is characterized by high flow fluctuations on the leeside, compared to the low fluctuations of the windward side.  相似文献   

8.
The results of numerical calculations of the stability of axisymmetric swirled flows in a viscous vortex embedded in a supersonic cocurrent stream with a constant circulation of the azimuthal velocity component are presented. The stability characteristics of the swirled three-dimensional viscous flow in the streamwise vortex are determined on the basis of the linearized system of Navier-Stokes equations for a viscous heat-conducting gas under the assumption that the basic undisturbed flow is locally plane-parallel. The disturbed flow stability is studied in the temporal formulation with respect to both symmetric and asymmetric three-dimensional waves traveling along the vortex axis and corresponding to both positive and negative values of the azimuthal wavenumber. It is shown that at external inviscid flow Mach numbers M = 2 and 3 thermal energy supply in a small region near the vortex axis leads to considerable restructuring of the basic undisturbed flow in the vicinity of the vortex core, the growth of the adverse pressure gradient along the vortex axis, and a significant change in the small perturbation stability and behavior.__________Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, 2005, pp. 71–80. Original Russian Text Copyright © 2005 by Kazakov.  相似文献   

9.
An adaptive strategy incorporating mesh remeshing and refining is developed to study the supersonic turbulent flow over a backward‐facing step on a mixed quadrilateral–triangular mesh. In the Cartesian co‐ordinate system, the unsteady Favre‐averaged Navier–Stokes equations with a low‐Reynolds‐number k–εturbulence model are solved using a locally implicit scheme with an anisotropic dissipation model. In the present adaptive strategy, two error indicators for both mesh remeshing and refining, respectively, are presented. The remeshing error indicator incorporates unified magnitude of substantial derivative of pressure and that of vorticity magnitude, whereas the refining error indicator incorporates unified magnitude of substantial derivative of pressure and that of weighted vorticity magnitude. To assess the present approach, the transonic turbulent flow around an NACA 0012 airfoil is performed. Based on the comparison with the experimental data, the accuracy of the present approach is confirmed. According to the high‐resolutional result on the adaptive mesh, the structure of backstep corner vortex, expansion wave and oblique shock wave is distinctly captured. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
11.
The paper discusses the supersonic flow around a blunt smooth body by a stream of viscous gas with subsonic injection from the surface of the body. The effect of various injection cycles on the physical flow characteristics ahead of the body are studied in [1, 2]; the problem is considered in the approximation of a boundary layer. The nonuniform composition of the gas ahead of the body, chemical reactions between the various components, and the effect of radiation are taken into account. For a number of flow cycles, which are of practical importance, it will be of interest to consider higher approximations in powers of [=1/Re, see Eq. (1.1) below] in the shock layer ahead of the body and, in particular, to explain the action of the displacement effect and also the limits of applicability of the boundary-layer approximation assumed in [1, 2]. Extensive literature has been devoted to the asymptotics of the problem of flow around a blunt body of a viscous gas at high Reynolds numbers (see, for example, Van Dyke's book [3]). An investigation of the problem, based on the method of M. I. Vishik and L. A. Lyusternik, is contained in [4–6]. (The advantage of the use of Vishlik and Lyusternik's method in comparison with the method of internal and external expansion is discussed in [4].) The effect of injection on the flow has not been considered in the papers listed. In this paper, approximate solutions are constructed with an error of order and 2 which take into account the effect of the injectionf on the flow . The approximate solutions are compiled from a more accurate nonviscous flow (external solution) and boundary-layer corrections. The boundary-layer corrections are constructed on a shock wave and a contact boundary in such a way that the solution would be continuous and quite smooth. For the external solution at the contact boundary, conditions are obtained which take into account the effect of viscosity.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 69–77, January–February, 1974.  相似文献   

12.
A study is made of the flow resulting from the interaction of a supersonic stream with a transverse sonic or supersonic jet blown at right angles to the direction of the main stream through a nozzle whose exit section is situated on a flat wall.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 137–139, May–June, 1981.  相似文献   

13.
The experimental investigation of supersonic flow past a sphere with a jet exhausting from the front point of the sphere into the flow at large [1] and moderate [2] Reynolds numbers Re has revealed an effect of shielding from the oncoming stream, this leading to a decrease in the drag coefficient of the sphere and of the energy flux to it. A numerical simulation of the flow has been made in the case of supersonic flow past a sphere with a sonic jet from a nozzle situated on the symmetry axis in the continuum regime [3]. In the present paper, this problem is investigated for flow of a rarefied gas on the basis of numerical solution of a model kinetic equation for a monatomic gas.  相似文献   

14.
This paper is on the application of the upwind difference scheme proposed by the author[1] to the calculation of supersonic steady-state flow in axisymmetric nozzles. The upwind scheme is conservative (or weakly conservative), it yields results approximating those from the characteristic relations, and it has corresponding boundary difference schemes. The entropy phenomenon in the calculation of shock reflection on boundaries with the shock-capturing method will be discussed and a correction of this phenomenon will be proposed. From numerical experiments on an arbitrary nozzle, it is seen that the upwind difference scheme, its corresponding boundary scheme, and the improved treatment of shock reflection work well for the calculation of supersonic steady-state flow in axisymmetric nozzles.  相似文献   

15.
In well-known papers devoted to the investigation of supersonic streams adjacent to a wall, the authors, as a rule, restrict themselves to the case of a subsonic blast. In the present paper we determine the velocity field and the concentration field of an admixture of helium in a plane supersonic stream of air (M1=2.18), propagating along a surface in an accompanying supersonic flow of air (M2=2.7 and 3.8). In the boundary layer approximation a numerical calculation is made of the non-self-similar isobaric flow, using the equation for the turbulent viscosity [1] as the closing relationship. Results of the calculation are compared with experimental data.Moscow. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 25–32, July–August, 1972.  相似文献   

16.
The case of supersonic flow over a blunt body when another gas is injected through the surface of the body in accordance with a given law is theoretically investigated. If molecular transport processes are neglected, the flow between the shock wave and the surface of the body should be regarded as two-layer, that is, as consisting of the flow in the shock layer between the shock wave and the contact surface and the flow in the layer of injected gas. A numerical solution of the problem is obtained near the front of the body and its accuracy is estimated. Approximate analytic solutions are obtained in the injected-gas layer: a constant-density solution and a solution of the boundary-layer type in the local similarity approximation. Near the flow axis the numerical and analytic solutions are fairly close, but at a distance from the axis the assumptions made reduce the accuracy of the approximate solutions. The flow in question can serve as a gas-dynamic model of a series of problems describing the radiant heating of blunt bodies in a hypersonic flow. In the presence of intense radiative heat transfer, vaporization is so great that the thickness of the vapor layer is comparable with the thickness of the shock layer. Moreover, the thermal shielding of various kinds of obstacles in channels through which a radiating plasma flows can be organized by means of the forced injection of a strong absorber. The formulation of a similar problem was reported in [1], but the results of the solution were not given. A two-layer model of the flow of an ideal gas over a blunt body was used in [2, 3] for the analysis of radiative heat transfer. In [2] the neighborhood of the stagnation point is considered. In [3] preliminary results relating to two-layer flow over blunt cones are presented. The solution is obtained by Maslen's approximate method.Moscow. Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 2, pp. 89–97, March–April, 1972.  相似文献   

17.
Calculations were made of the supersonic flow of an inviscid gas which does not conduct heat over two-dimensional and axisymmetric ducted bodies in regimes with a detached shock wave and completely subsonic gas velocity in the cylindrical duct. The investigated bodies have a pointed leading edge. The flow rate of the gas through the duct is assumed to be given. This corresponds to the presence in the exit section of the duct of a throttle or an impermeable barrier (in which case the flow rate is zero). The numerical algorithm used in the calculations is based on stabilization in time and Godunov's difference scheme [1] with separation of the shock wave. The integrated flow characteristics are given. The values of the wave resistance coefficient obtained in the calculations are compared with the values found using Taganov's approximate approach.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 160–163, May–June, 1981.I thank A. N. Kraiko for regular consultations, Yu. B. Lifshits for a helpful comment, and V. A. Vostretsov for assisting in the work.  相似文献   

18.
19.
The effect of swirling the flow at the nozzle inlet on the shape of the optimum supersonic section with a break at the point of intersection of the limiting characteristic and the contour is investigated within the framework of the ideal (inviscid and non-heat-conducting) gas model. A direct method based on reduction to a problem of nonlinear programming is used for the numerical solution of the corresponding variational problem.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 155–160, May–June, 1989.In conclusion, the authors wish to thank N. I. Tillyaeva and A. N. Kraiko for participating in the discussions and A. A. Glazunov for assisting with the work.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号