首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents an integrated approach combining experimental tests and numerical modeling to characterize mode I fracture behavior of bituminous paving mixtures subjected to a wide range of loading rates at intermediate temperature conditions. A simple experimental protocol is developed using the semi-circular bending (SCB) test geometry. The local fracture behavior at the initial notch tip of the SCB specimens is monitored using high-speed cameras with a digital image correlation (DIC) system. The DIC results of the SCB fracture tests are then simulated using a finite element method that is incorporated with material viscoelasticity and cohesive zone fracture. Fracture properties are obtained locally at the notch tip by identifying two cohesive zone fracture parameters (cohesive strength and fracture energy) that result in a good agreement between test results and numerical simulations. The results clearly present significant rate-dependent fracture characteristics of bituminous paving mixtures at intermediate service temperatures. This study further demonstrates that fracture properties of viscoelastic materials need to be characterized at the local fracture process zone when they present ductile fracture behavior.  相似文献   

2.
The damage and fracture behaviors of semicircular bending(SCB) asphalt mixture specimens with different orientation notches are experimentally and numerically investigated. In the numerical simulations, asphalt mixture is modeled as a two-phase material, namely a mix of coarse aggregates and asphalt mastic, and the mechanical behavior of asphalt mastic is characterized with the damage constitutive model and the damage-based fracture criterion. Some SCB experiments are performed on the asphalt mixture specimens with different orientation notches to validate the numerical method. Finally, the effects of notch orientation and aggregate distribution on crack path, damage distribution, and the load vs.displacement relation are numerically evaluated.  相似文献   

3.
The feasibility of determining the creep compliance of asphalt concrete from a notched Semi-Circular Bend (SCB) test specimen was investigated. The objective of this study was to propose a combined test methodology that can provide both viscoelastic and fracture properties of asphalt concrete mixtures tested at low temperatures. Finite element (FE) analyses were performed to understand the stress state in the SCB, and an optimal load range producing appreciable displacement measurements while preserving the linear viscoelastic conditions was identified. Expressions that relate displacement measurements, from particular regions of the SCB specimen, to creep function were derived. The validity of the proposed SCB creep method was tested both by numerical simulations and experimental testing. Good agreement was found between the creep function obtained from SCB and those obtained from the Three-Point Bending Beam (3PBB) and the Indirect Tensile (IDT) creep test.  相似文献   

4.
A disk-shaped compact tension (DC(T)) test has been developed as a practical method for obtaining the fracture energy of asphalt concrete. The main purpose of the development of this specimen geometry is the ability to test cylindrical cores obtained from in-place asphalt concrete pavements or gyratory-compacted specimens fabricated during the mixture design process. A suitable specimen geometry was developed using the ASTM E399 standard for compact tension testing of metals as a starting point. After finalizing the specimen geometry, a typical asphalt concrete surface mixture was tested at various temperatures and loading rates to evaluate the proposed DC(T) configuration. The variability of the fracture energy obtained from the DC(T) geometry was found to be comparable with the variability associated with other fracture tests for asphalt concrete. The ability of the test to detect changes in the fracture energy with the various testing conditions (temperature and loading rate) was the benchmark for determining the potential of using the DC(T) geometry. The test has the capability to capture the transition of asphalt concrete from a brittle material at low temperatures to a more ductile material at higher temperatures. Because testing was conducted on ungrooved specimens, special care was taken to quantify deviations of the crack path from the pure mode I crack path. An analysis of variance of test data revealed that the prototype DC(T) can detect statistical differences in fracture energy resulting for tests conducted across a useful range of test temperatures and loading rates. This specific analysis also indicated that fracture energy is not correlated to crack deviation angle. This paper also provides an overview of ongoing work integrating experimental results and observations with numerical analysis by means of a cohesive zone model tailored for asphalt concrete fracture behavior.  相似文献   

5.
Employing an extension of the splitting tensile by using a notched cylinder specimen, we have studied effects of initial notch length and maximum aggregate size on fracture toughness of concrete. Experimental results show that maximum aggregate size does influence ductility, with increasingly ductile behavior associated with increasing aggregate size. The results also support previous work in that initial notch length and maximum load do not yield a constant value for fracture toughness, whereas maximum linear load and initial notch length minimize the effects of slow crack growth and do produce a more constant value.  相似文献   

6.
The extra-low cyclic fracture problem of medium carbon steel under axial fatigue loading was investigated. Several problems, such as the relations of the cycle times to the depth and tip radius of the notch, loading frequency, loading range and the parameters of fracture design for medium carbon steel on condition of extra-low axial fatigue loading were discussed based on the experiments. Experimental results indicated that the tension-pressure fatigue loading mode was suitable for extra-low cyclic fatigue fracture design of medium carbon steel and it resulted in low energy consumption, fracture surface with high quality, low cycle times, and high efficiency. The appropriate parameters were as follows: loading frequency 3-5 Hz, notch tip radius r = (0.2-0.3) mm, opening angle α = 60°, and notch depth t = (0.14-0.17)D.  相似文献   

7.
Straight-run bitumens are no longer suitable in new asphalt mixtures. Consequently, the use of modified bitumens has become more important. In order to both improve binders’ mechanical properties and prevent it from phase separation whilst stored at high temperature, the paving industry is currently developing new modification routes based on reactive agents. This work studies the use of thiourea, which has proven to efficiently broaden the temperature interval over which the binder demonstrates an adequate performance. On the one hand, viscous flow and dynamic shear tests indicate an enhancement in the high in-service temperature strength, along with a reduced thermal susceptibility. On the other hand, results of dynamic flexural tests reveal a significant decrease in the binder glass transition temperature. Finally, the use of master curves and a further frequency/temperature conversion are proposed, in order to attain a suitable viscoelastic characterisation of bituminous binders at low temperatures.  相似文献   

8.
Asphalt materials are used in a variety of applications such as road paving, waterproofing, roofing membranes, adhesive binders, rust proofing and water resistant coatings. There are available in a number of grades distinguished in terms of their softening point and flow resistance. The selection of the proper grade of asphalt for a particular application is governed by the desired flow behaviour. A knowledge of the complete flow curve depicting the variation of melt viscosity with shear rate at the relevant temperatures is necessary not only for proper grade selection, but also for specifying processing conditions for aggregate mixing and spraying. The rheological data are also useful in assessing end use performance. The scientific techniques for generating the rheological data involve the use of expensive, sophisticated instruments. Generation of the necessary flow data using these instruments is beyond the financial and technical means of most processors of asphalt materials. The engineering techniques involving the use of inexpensive vacuum viscometers are relatively easy, but provide a single point viscosity measurement at low shear rate. In the present work, a method is proposed for unifying the viscosity versus shear rate a data at various temperatures for a number of asphalt grades. A master curve has been generated that is independent of the grade of asphalt and the temperature of viscosity measurement. The master curve can be used to generate rheograms at desired temperatures for the asphalt grade of interest, knowing its zero-shear viscosity at that temperature.NCL Communication Number 2914.  相似文献   

9.
The mechanical behaviour of Polyvinylidene Fluoride (PVDF) is analysed. To this end, tensile tests are performed on both smooth and notched specimens, for several values of the notch radius in order to set specific values of the stress triaxiality ratio in the net section. Tests were performed at various temperatures and at various strain rates. Experimental data together with fracture surface examinations by SEM allow the dependence of deformation and void growth processes on strain rate and temperature to be investigated. This experimental work was carried out in order to test the mechanics of porous media model. For each investigated temperature, constitutive relations take both porosity and strain rate sensitivity into account. The model is proposed for deformation leading to crazing. The material coefficients are optimised by imposing a continuous dependence on temperature.  相似文献   

10.
Polymer bonded explosives (PBXs) are highly particle-filled composite materials. This paper experimentally studies the tensile deformation and fracture behavior of a PBX simulation by using the semi-circular bending (SCB) test. The deformation and fracture process of a pre-notched SCB sample with a random speckle pattern is recorded by a charge coupled device camera. The displacement and strain fields on the observed surface during the loading process are obtained by using the digital image correlation method. The crack opening displacement is calculated from the displacement fields, the initiation and propagation of the crack are analyzed. In addition, the damage evolution and fracture mechanisms of the SCB sample are analyzed according to the strain fields and the correlation coefficient fields at different loading steps.  相似文献   

11.
Influence of thermal history on rheological properties of various bitumen   总被引:1,自引:0,他引:1  
This paper focuses on the influence of thermal history on the rheological properties of unmodified and polymer modified bitumen (PMB), measured at elevated service temperatures, and contributes to the development of test methods for measuring binder properties, which can be used as indicators for asphalt rutting. It was found that the storing and preparation conditions prior to the rheological measurement can have a large influence, especially in the range of long loading times or low frequencies. For elastomer modification, the homogenization and sample pouring temperature and the corresponding change in microstructure, as revealed by fluorescence microscopy, have a large impact on the rheological measurements. For binders with semi-crystalline modifiers, the storage conditions between sample preparation and testing have the largest impact on the rheological behaviour. This can be related to variations in crystallinity, as shown by calorimetry. The main conclusion from this study is that sample preparation and handling is extremely important for the rheological properties of PMBs. Reproducibility can only be achieved when these conditions are controlled more accurately, especially in binder specification tests for rutting susceptibility.  相似文献   

12.
A heterogeneous fracture approach is presented for modeling asphalt concrete that is composed of solid inclusions and a viscous matrix, and is subjected to mode-I loading in the fracture test configuration. A heterogeneous fracture model, based on the discrete element method (DEM), is developed to investigate various fracture toughening mechanisms of asphalt materials using a high-resolution image processing technique. An energy-based bilinear cohesive zone model is used to model the crack initiation and propagation of materials, and is implemented as a user-defined model within the discrete element method. Experimental fracture tests are performed to investigate various fracture behavior of asphalt concrete and obtain material input parameters for numerical models. Also, bulk material properties are necessary for each material phase for heterogeneous numerical models; these properties are determined by uniaxial complex modulus tests and indirect tensile strength tests. The main objective of this study is to integrate the experimental tests and numerical models in order to better understand the fracture mechanisms of asphaltic heterogeneous materials. Experimental results and numerical simulations are compared at different test conditions with excellent agreement. The heterogeneous DEM fracture modeling approach has the potential capability to understand various crack mechanisms of quasi-brittle materials.  相似文献   

13.
采用J积分对沥青混合料抗裂性能进行评价   总被引:2,自引:0,他引:2  
沥青混合料是一种由集料、胶浆和孔隙组成的非均质材料,一般被认为是一种粘弹性材料,其力学行为介于弹性和塑性之间,采用弹塑性断裂力学更适合评价沥青混合料的抗裂性能.J积分理论可以避开分析裂纹尖端附近复杂的应力应变场,物理意义明确,可以有效的评价沥青混合料的抗裂性能,断裂韧度JC可以很方便的采用预切缝的半圆弯拉试验直接获得.为了评价材料本身特性对断裂韧度JC影响,在MTS试验系统上进行了3种级配的沥青混合料的断裂韧度试验.采用基于数字图像处理技术的有限元方法对半圆弯拉试验进行了模拟,并将数值模拟的结果与试验的结果进行了对比分析.结论表明,断裂韧度JC可以作为一有效的评价沥青混合料抗裂性能的指标.  相似文献   

14.
The main failure mechanisms of flexible pavements, such as low-temperature cracking, fatigue failure, and rutting are strongly influenced by the viscoelastic properties of asphalt. These viscoelastic properties originate from the thermorheological behavior of bitumen, the binder material of asphalt. In this paper, the bitumen behavior is studied by means of a comprehensive experimental program, allowing the identification of viscoelastic parameters of a power-law type creep model, indicating two time scales (short-term and long-term) within the creep deformation history of bitumen. Moreover, these characteristics of the creep deformation transfer towards bitumen-inclusion mixtures, as illustrated for mastic, consisting of bitumen and filler. For this purpose, the aforementioned power-law creep model is implemented into a micromechanical framework. Finally, the activation of the different creep mechanisms as a function of the loading rate is discussed, using viscoelastic properties obtained from both static and cyclic creep tests.  相似文献   

15.
摘要:高熵合金是一种由多种主元元素组成的新型合金。实验研究表明等原子比CrMnFeCoNi高熵合金在低温下具有比室温更高的拉伸强度和断裂韧性。本文针对这一现象,利用分子动力学模拟对平均晶粒尺寸为6 nm的CrMnFeCoNi纳米晶在300、200和77 K下分别进行拉伸模拟。模拟研究揭示了纳米尺度CrMnFeCoNi高熵合金力学行为的温度效应和强韧机理。微结构演化分析表明:低温下,塑性变形阶段,滑移系开动的较少,位错滑移所受的阻力越大,屈服强度和抗拉强度越大;模型破坏时,孔洞缺陷形核较慢,更多孔洞缺陷演化成断口,更多的断口分摊拉伸应变,使得高熵合金纳米晶的低温韧性更好。  相似文献   

16.
A continuum damage framework is developed and coupled with an existing crystal plasticity framework, to model failure initiation in irradiated bcc polycrystalline materials at intermediate temperatures. Constitutive equations for vacancy generation due to inelastic deformation, void nucleation due to vacancy condensation, and diffusion-assisted void growth are developed. The framework is used to simulate failure initiation at dislocation channel interfaces and grain boundaries ahead of a sharp notch. Evolution of the microstructure is considered in terms of the evolution of inelastic deformation, vacancy concentration, and void number density and radius. Evolution of the damage, i.e., volume fraction of the voids, is studied as a function of applied deformation. Effects of strain rate and temperature on failure initiation are also studied. The framework is used to compute the fracture toughness of irradiated specimens for various loading histories and notch geometries. Crack growth resistance of the irradiated specimens are computed and compared to that of virgin specimens. Results are compared to available experimental data.  相似文献   

17.
Tensile cracking in asphalt pavements due to vehicular and thermal loads has become an experimental and numerical research focus in the asphalt materials community. Previous studies have used the discrete element method (DEM) to study asphalt concrete fracture. These studies used trial-and-error to obtain local fracture properties such that the DEM models approximate the experimental load-crack mouth opening displacement response. In the current study, we identify the cohesive fracture properties of asphalt mixtures via a nonlinear optimization method. The method encompasses a comparative investigation of displacement fields obtained using both digital image correlation (DIC) and heterogeneous DEM fracture simulations. The proposed method is applied to two standard fracture test geometries: the single-edge notched beam test, SE(B), under three-point bending, and the disk-shaped compact tension test, DC(T). For each test, the Subset Splitting DIC algorithm is used to determine the displacement field in a predefined region near the notch tip. Then, a given number of DEM simulations are performed on the same specimen. The DEM is used to simulate the fracture of asphalt concrete with a linear softening cohesive contact model, where fracture-related properties (e.g., maximum tensile force and maximum crack opening) are varied within a predefined range. The difference between DIC and DEM displacement fields for each set of fracture parameters is then computed and converted to a continuous function via multivariate Lagrange interpolation. Finally, we use a Newton-like optimization technique to minimize Lagrange multinomials, yielding a set of fracture parameters that minimizes the difference between the DEM and DIC displacement fields. The optimized set of fracture parameters from this nonlinear optimization procedure led to DEM results which are consistent with the experimental results for both SE(B) and DC(T) geometries.  相似文献   

18.
高应变率下断裂韧性实验的数值模拟   总被引:1,自引:0,他引:1  
采用有限元软件ANSYS/LS-DYNA程序对静态和冲击荷载作用下的含裂纹半圆弯曲(SCB)实验进行了数值模拟。根据静态实验的模拟结果,提出了适合复合型加载的Ⅰ型应力强度因子拟合公式,采用该公式计算应力强度因子的最大误差不超过10%。动态实验的模拟结果表明:对于纯Ⅰ型加载的SCB实验,动态应力强度因子随着试样半径、支座间距以及相对裂纹长度的变化呈现规律性变化;当试样半径小于60mm、相对支座间距为1.2、相对裂纹长度在0.1~0.4范围内时,惯性效应的影响较小,采用静态拟合公式计算裂尖的动态应力强度因子的误差约10%;对于复合型加载的SCB实验,当相对裂纹长度为0.2~0.4、裂纹倾角在10°~40°范围内时,采用静态拟合公式计算裂尖的动态应力强度因子的误差小于10%。  相似文献   

19.
动态加载下,混凝土中钢筋的阻裂性能一直是冲击动力学研究领域的难点之一。利用落锤试验机对含缺口的混凝土少筋梁进行三点弯曲试验,分析了不同加载速率下梁的冲击力、跨中挠度、混凝土起裂应变率和钢筋应变。实验结果表明:在一定加载速率范围内(0.885~1.252 m/s),混凝土预制裂缝尖端的裂纹起裂应变率、冲击力最大值、跨中挠度峰值与加载速率呈线性增长关系,当加载速率增至1.771 m/s时,增长趋势减弱;冲击力卸载时,钢筋部分弹性变形恢复导致裂纹产生闭合,裂纹嘴张开位移逐渐减小至恒定值,对裂纹嘴张开位移峰值前的部分曲线进行拟合后得到裂纹嘴张开位移率,结果表明裂纹嘴张开位移率随加载速率的提高而线性增大。  相似文献   

20.
将沥青混合料看作由粗骨料和沥青砂组成的两相复合材料,根据给定的级配生成凸多面体骨料,然后利用随机投放算法建立沥青混合料试样的三维随机模型.采用广义Maxwell模型刻画沥青砂的本构行为,其参数通过单轴蠕变实验获得.在对三维随机模型的有效性进行验证之后,采用参数化建模方法建立包含不同骨料分布、含量和级配的沥青混合料有限元...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号