首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diels-Alder reaction of methyl (E)-3-(1H-imidazol-4-yl)propenoates 2, 3a-c and (E)4-(2-nitroethenyl)-1H-imidazoles 3d,e with 2,3-dimethyl-1,3-butadiene, cyclopentadiene, and cyclohexa-1,3-diene gave the corresponding cycloadducts 6–9 .  相似文献   

2.
The cationic polymerizations of dimethyl-1,3-butadienes with various catalysts in methylene chloride and toluene have been investigated. The activity of catalysts decreased in the order WCl6 > AcClO4 > SnCl4·TCA > BF3OEt2. The homopolymerization rate of dimethyl-1,3-butadienes with WCl6, AcClO4, and SnCl4·TCA decreased in the order 1,3-dimethyl-1,3-butadiene > 2,3-dimethyl-1,3-butadiene > 1,2-dimethyl-1,3-butadiene > 2,4-hexadiene. The polymers prepared with WCl6, SnCl4.TCA, and BF3OEt2 were rubberlike polymers or white powders, whereas those prepared with AcClO4 were oily oligomers. The 1,4-propagation increased in the order 1,2-dimethyl-1,3-butadiene < 1,3-dimethyl-1,3-butadiene < 2,3-dimethyl-1,3-butadiene < 2,4-hexadiene. This order may indicate that the steric effect of methyl group determine primarily the microstructure of the polymer. The relative reactivity of dimethyl-1,3-butadienes toward a styryl cation decreased in the order 1,3-dimethyl-1,3-butadiene > 1,2-dimethyl-1,3-butadiene > 2,3-dimethyl-1,3-butadiene > 2,4-hexadiene. This order may be explained in terms of the stability of the resulting allylic cation.  相似文献   

3.
2,3-Bis(diphenylphosphino)-1,3-butadiene A method for synthesis of the title compound is described, using the readily available 2,3-bis(diphenylphosphinoyl)-1,3-butadiene ( 1 ) as the starting material. For the protection of the diene system, 1 is first converted into the 1,4-dibromo- and 1,4-dichloro derivatives 2a and b , respectively, by addition of Br2 or Cl2, respectively. The structure of 2b has been determined by single-crystal X-ray diffraction. The molecule has a centrosymmetrical (E)-configuration. Reduction of the phosphinoyl groups by HSiCl3(to give the bis(diphenylphosphino)compound 3), followed by removal of the Cl-atoms using Zn powder, affords the bis(diphenylphosphino)butadiene 4 . Compounds 3 and 4 give quaternary phosphonium salts 5 and 6 , respectively, on addition of CH3OSO2F or CH3I. The sulfur analogue of 1 is formed on treatment of 4 with elemental sulfur.  相似文献   

4.
By 1,4-addition of arylaldehydes to 2,3-dimethyl-1,3-butadiene in the presence of sulfuric acid 2-aryl-4,5-dimethyl-3,6-dihydro-2H-pyrans are obtained. From 1,3-butadiene and isoprene beside the corresponding 3,6-dihydro-2H-pyrans by reaction with two more molecules aldehydetrans-2,4,7-triphenyl-4a,7,8,8a-tetrahydro-4H,5H-pyrano[4,3-d-1,3-dioxines are formed. With 1,3-cyclohexadiene, however, 1,2-addition of benzaldehyde is observed to givecis-r-2,c-4-diphenyl-4a,5,6,8a-tetrahydro-1,3-benzodioxane.  相似文献   

5.
Treatment of a benzene or a CH2Cl2 solution of bis(N,N-dimethylcarbamoylseleno)methanes with SnCl4 afforded β-1,3,5-triselenanes, and the key intermediates, acylselonium ions and selenoaldehydes, were successfully trapped by using allyltrimethylsilane or 2,3-dimethyl-1,3-butadiene to obtain the allylation products or the cycloadducts, respectively.  相似文献   

6.
T. Gajda  A. Zwierzak 《Tetrahedron》1985,41(21):4953-4960
The addition of DCPA to several conjugated 1,3-dienes has been studied. The reaction was found to proceed in dichloromethane and was spontaneously or photolytically initiated depending on the structure of the dienes. N-chloro adducts, formed upon addition, could be reduced “in situ” with sodium sulphite solution to give the corresponding diethyl N-(chloroalkenyl)posphoroamidates. Addition of DCPA to terminal double bond 1,3-dienes (butadiene, isoprene and 2,3-dimethyl-1,3-butadiene) leads regiospecifically to (E)-1,4-adducts. Similarly, 1,4-addition is also observed for 1,3-cyclohexadiene. Reaction of DCPA with nonterminal double bond 1,3-dienes (trans-piperylene, 4-methyl-1,3-pentadiene, 2,5-dimethyl-2,4-hexadiene and 1,4-diphenyl-1,3-butadiene) usually affords a mixture of adducts. Spectral data and chemical transformations pertinent to the proof of structure of DCPA addition products are presented. A possible mechanism for the addition is discussed.  相似文献   

7.
tert-Butylthiophosphinidene complex [tBuSP-W(CO)5] was generated by dissociation of 1-(tert-butylthio)phosphirane–W(CO)5 complex under mild conditions. The formation of transient [tBuSP-W(CO)5] was indicated by trapping reactions with 2,3-dimethyl-1,3-butadiene, alkynes, phenanthrene-9,10-dione, and methanol. The LUMO of [MeSP-W(CO)5] is significantly lower in energy than those of [Me2NP-W(CO)5], [MeOP-W(CO)5], and [Me2PP-W(CO)5]. The HOMO of [MeSP-W(CO)5] contains a significant contribution from the in-plane lone pair of P and the LUMO shows a typical π* characteristic. Since stabilized by sulfur lone pair and coordinated by W(CO)5, [tBuSP-W(CO)5] undergoes facile and reversible cycloadditions with alkenes and alkynes.  相似文献   

8.
Studies of the reaction of GeCl4 with acyclic conjugated dienes (1,3-butadiene, 2-methyl-1,3- butadiene, 2,3-dimethyl-1,3-butadiene) and cyclopentadiene in the presence of Si2Cl6 initiator were carried out. With acyclic dienes, corresponding 1,1-dichloro-1-germacyclo-3-pentenes and 1,1-dichloro-1-silacyclo-3- pentenes are preferrably formed. With cyclopentadiene the main reaction products are cyclopentenyltrichlorogermanes and cyclopentenyltrichlorosilanes formed respectively by hydrogermylation and hydrosilylation of the starting diene. The explanation of the established rule is offered.  相似文献   

9.
Reactions of ozone with propene, 1-butene, cis-2-butene, trans-2-butene, 2,3-dimethyl-2-butene, and 1,3-butadiene were carried out in N2 and air diluent at atmospheric pressure and room temperature and, by monitoring the formation of the epoxides and/or a carbonyl compound formed from the reactions of O(3P) atoms with these alkenes, the formation yields of O(3P) atoms from the O3 reactions were investigated. No evidence for O(3P) atom formation was obtained, and upper limits to O(3P) atom formation yields of <4% for propene, <5% for 1.3-butadiene, and <2% for the other four alkenes were derived. The reaction of O3 with 1,3-butadiene led to the direct formation of 3,4-epoxy-1-butene in (2.3 ± 0.4)% yield. These data are in agreement with the majority of the literature data and show that O(3P) atom formation is not a significant pathway in O3—alkene reactions, and that epoxide formation only occurs to any significant extent from conjugated dienes. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
The complex Mo(CO)3(NCMe)(PPh3)2, was synthesized by the reaction of Mo(NCMe)3(CO)3 with two equivalents of PPh3 and characterized by UV–Vis, IR, NMR and X-ray diffraction. This complex was used as a catalyst precursor for the hydrogenation of 1-hexene, styrene, cyclohexene and 2,3-dimethyl-1-butene and their mixtures under moderate conditions in homogeneous media. Under mild reaction conditions (T = 373 K, P = 60 atm), the substrates showed the following reactivity order: styrene > 1-hexene > cyclohexene > 2,3-dimethyl-1-butene. A quaternary equimolar mixture showed a different hydrogenation order: 1-hexene > cyclohexene > styrene > 2,3-dimethyl-1-butene; the presence of dibenzothiophene or mercury does not interfere with the activity of the catalyst.  相似文献   

11.
A series of Ru(acac)24-diene) complexes containing cis- and trans-diene coordination have been investigated by cyclic voltammetry to correlate structural bonding and conformation patterns of diene ligands with redox behaviors. The solid-state structure of Ru(acac)2(2,3-dimethyl-1,3-butadiene) has been determined by single crystal X-ray diffraction methods. Ru(acac)2(2,3-dimethyl-1,3-butadiene) crystallizes in the monoclinic space group C2/c with a = 12.368(2) Å, b = 17.0600(2) Å, c = 16.0110(2) Å, β = 98.4405(10)° and V = 3341.38(10) Å3 for Z = 8. A structural comparison between several Ru-trans4-diene complexes and Ru-η4-1,3-cyclohexadiene revealed no difference in the Ru-C(diene) bond distances. However, through cyclic voltammetry experiments these species demonstrated different redox behavior, as function of the coordinated diene ligand.  相似文献   

12.
An electron diffraction analysis of the molecular structures of 1,1,1,3,3,3-hexachloro-1,3-disilapropane and octachloro-1,3-disilapropane has been carried out. Deviations from the staggered conformation are indicated. The data may be approximated by models with C2 symmetry and a small tilt of the SiCl3 groups. The main bond lengths (rg) and bond angles obtained for (SiCl3)2 CH2 are: SiCl, 202.7(4); SiC, 186.6(6); CH, 109.8(24) pm, ClSiCl, 107.9(1); SiCSi, 118.3(7)°; and for (SiCl3)2CCl2: SiCl, 202.0(4); SiC, 190.2(9); CCl, 179.6(9) pm; ClSiCl, 109.5(1); SiCSi, 120.6(9); ClCCl, 110.9(16); SiCCl, 106.3(3)°.  相似文献   

13.
Dehydration of (S)-3,5-dimethyl-1-hepten-3-ol gave: (3E)- (I) and (3Z)-(5S)-3,5-dimethyl-1,3-heptadienes (II) and 2-[(S)- 2-methylbutyl]-1,3-butadiene (III). 2-[(S)-1-Methylpropyl]-1,3-butadiene (IV) was also prepared similarly by dehydration of (S)-3,4-dimethyl-1-hexene-3-ol. Monomers I–IV we polymerized in the presence of the TiCl4–Al(i-C4H9)3 catalyst system and in emulsion with K2S2O8 as initiator. Monomer IV was also polymerized in the presence of butyllithium. Specific rotations of polymers are of the same order of magnitude as that of monomers, with exception of polymers prepared by stereospecific polymerization of (S)-I and (S)-II. The acetone-soluble fraction of these polymers has a molar rotation similar to that of monomer, while the acetone-insoluble part has a lower rotation ([M]D of monomer +53.2°; [M]D of polymer, +5.9°).  相似文献   

14.
The polymerization of isobutylene with VCl4 in n-heptane or in the bulk does not proceed in the dark at temperatures lower than -20°C, yet it may be induced by the addition of styrene, α-methylstyrene, p-divinylbenzene, 1,3-butadiene, isoprene, and 2,3-dimethyl-1,3-butadiene. In these cases the polymerizations proceed with variously long induction periods depending on the type of comonomer used. The shortest induction period was observed after the addition of p-divinylbenzene and 2, 3-dimethyl-1, 3-butadiene. In a nonpolar medium the copolymerization of isobutylene with isoprene or butadiene in the dark gives rise to copolymers insoluble in heptane, benzene, and CCl4, while co-polymers formed with the effect of light are soluble. Unlike polymerizations carried out in a nonpolar solution, the polymerization of isobutylene with VCl4 in methyl chloride proceeds spontaneously in the absence of protonic coinitiators. Also, soluble copolymers of isobutylene with isoprene or butadiene arise in the copolymerization in methylchloride solution irrespective of the procedure used when the copolymerization is carried out (in the dark or with the effect of light). Polymerizations and copolymerizations carried out both in nonpolar and in polar solutions are inhibited by the presence of oxygen.  相似文献   

15.
The reaction of 2,3,5,6-tetrakis(methylene)-7-oxabicyclo[2.2.1]heptane (I) with iron carbonyls in various solvents yields the (η4-1,3-diene)Fe(CO)3 isomers (II: exo; III: endo) and the bimetallic isomers bis[(η4-1,3-diene)Fe(CO)3] (IV: bis(exo); V: endo,exo). In weakly coordinating solvents, a parallel rearrangement of I occurs through CO bond cleavage of the allylic ether by Fe2(CO)9 yielding an unsaturated ketone (VI) bonded to two Fe(CO)3 groups through a trimethylenemethane and a 1,3-diene system, respectively. The geometries of III and VI have been ascertained by X-ray crystal structure determinations.  相似文献   

16.
The chemistry of several of the Diels-Alder adducts formed by the reaction of 4,4-diethylpyrazoline-3,5-dione ( 1 ) with conjugated dienes was studied with respect to reduction (hydride and catalytic) and reaction with base. Reaction of the 2,3-dimethyl-1,3-butadiene adduct with lithium aluminum hydride followed by hydrogenation gave 1,3,5,6,7,8-hexahydro-cis-endo-6,7-dimethyl-2,2-diethylpyrazolo[1,2-a]pyridazine ( 11 ). Attempted conversion of this compound to 3,3-diethyl-cis-7,8-dimethyl-1,5-diazacyclononane ( 12 ) gave instead a compound which has been tentatively identified as N-(2,3-dimethyl-4-aminobutyl)-2-ethyl-2-methylbutanaldimine ( 14 ). Lithium aluminum hydride reduction of 4,4-diethylpyrazolidine-3,5-dione ( 22 ) or the adducts formed from 1 and cyclopentadiene or 1,3-cyclohexadiene gave good yields of 4,4-diethylpyrazolidine ( 21 ). This later reduction gave a new and efficient synthetic route to the pyrazolidine ring system. Lithium aluminum hydride reduction of 5,6,7,8-tetrahydro-5,8-ethano-2,2-diethylpyrazolo[1,2-a]pyridazine-1,3(2H)dione ( 26 ) followed by hydrogenolysis led to a high yield of 4,4-diethyl-2,6-diazabicyclo[5.2.2]undecane ( 28 ) which is the first reported example of this ring system. Reaction of several of the adducts with ethanolic potassium hydroxide resulted in the opening of the five-membered ring.  相似文献   

17.
High-energy collisional activation mass spectrometry of HFe(CO)5+ ions shows that Fe(CO)5 is protonated on the iron atom rather than on one of the ligands. This finding is supported by ab initio quantum chemical calculations. The value of the proton affinity of Fe(CO)5 was measured by high-pressure mass spectrometry to be 857 kJ mol?1. The Fe? CO bond dissociation energies for HFe(CO)n+ (n = 1–5) were measured by energy-variable low-energy collisional activation mass spectrometry. The Fe? H bond dissociation energies in HFe(CO)n+ ions were also determined. A synergistic effect on the strengths of the Fe? H and Fe? CO bonds in HFe(CO)+ is noticed. It is demonstrated that the electronically unsaturated species HFe(CO)n+ (n = 3, 4) formed in exothermic proton-transfer reactions with Fe(CO)5 form adducts with CH4. Adducts between C2H5+ or C3H5+ and Fe(CO)n are observed. These adducts are probably formed in direct reactions between the respective carbocations and Fe(CO)5.  相似文献   

18.
Reactions of 2-aryl(heteryl)-1-acetyl(benzoyl)-1-nitroethenes with 2,3-dimethyl-1,3-butadiene led to the formation of products of [4+2]-cycloaddition, 1-acyl-6-aryl(heteryl)-3,4-dimethyl-1-nitro-3-cyclohexenes. Their structure was proved by IR and 1H NMR spectroscopy.  相似文献   

19.
When the reaction between an excess of Fe2(CO)9 and the pentaene 5,6,7,8-tetrakis(methylene)bicyclo[2.2.2]oct-2-ene(I) is carried out in hexane/methanol the endo,exo-bis(tetrahaptotricarbonyliron) isomer (C12H12)Fe2(CO)6(IIa)is the major product. The structure of this complex has been determined by X-ray diffraction.The asymmetric positions of the two Fe(CO)3 groups with respect to the roof-shaped organic skeleton was used to induce either stereo-specific functionalisation of the uncoordianted endocyclic CC double bond or stereo-and regiospecific functionalisation of one of the two coordinated s-cis-butadiene groups of the pentaene. Thus, hydroboration/oxidation of Ila gave the endo-exo-bis(tetrahaptotricarbonyliron)isomer of 5,6,7,8-tetrakis(methylene)bicyclo[2.2.2]octane-2-ol (IV). cis deuteration of the exocyclic double bond was achieved by treating IIa with D2/PtO2 in n-hexane.Protonation of IIa by HCl/AlCl3/CH2Cl2 to give the η4-diene : η2-ene : η3-dienyl cationic complex Va, followed by quenching of Va with NaHCO3/CH3OH, resulted in a 1,4-addition of methanol to one coordinated s-cis-butadiene system. In contrast, quenching with NaOCH3/CH3OH resulted in the corresponding 1,2-addition of methanol. This gave the η4-1,3-diene : η4-1,4-diene complex VIIIa in which, suprisingly, one Fe(CO)3 group is coordinated to two CC double bonds in gauche positions with respect to each other.  相似文献   

20.
Ethyl 2-{2-[4-(2,3-dimethyl-5-oxo-1-phenyl-3-(pyrazolin-4-yl)]-2-cyano-1-(phenylamino)vinylthio}-acetate, 2-[4-(2,3-dimethyl-5-oxo-1-phenyl-(3-pyrazolin-4-yl))(1,3-thiazol-2-yl)]2-(4-oxo-3-phenyl-(1,3-thiazoilidin-2-ylidene))ethanenitrile, 2-[4-(2,3-dimethyl-5-oxo-1-phenyl(3-pyrazolin-4-yl))(1,3-thiazol-2-yl)]-2-(4-methyl-3-phenyl(1,3-thiazolin-2-ylidene))ethanenitrile, 2-(5-acetyl-4-methyl-3-phenyl(1,3-thiazolin-2-ylidene))-2-[4-(2,3-dimethyl-5-oxo-1-phenyl(3-pyrazolin-4-yl))(1,3-thiazol-2-yl)]ethanenitrile, and ethyl 2-(cyano(4-(2,3-dihydro-1,5-dimethyl-3-oxo-2-phenyl-1H-pyrazol-4-yl)thiazol-2-yl)methylene)-2,3-dihydro-4-methyl-3-phenylthiazole-5-carboxylate were synthesized by treatment of 2-(4-(2,3-dihydro-1,5-dimethyl-3-oxo-2-phenyl-1H-pyrazol-4-yl)thiazol-2-yl)-3-mercapto-3-(phenylamino)-acrylonitrile with appropriate halo ketones or halo esters. Also, 4-{2-[5,7-dimethyl-2-(phenylamino)(7a-hydropyrazolo[1,5-a]pyrimidin-3-yl](1,-thiazol-4-yl)}-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one derivatives were synthesized via reaction of 4-{2-[5-amino-3-(phenylamino)pyrazolin-4-yl](1,3-thiazol-2-yl)}-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one with β-diketone or β-keto ester. All synthesized compound were established by elemental analysis, spectral data, and alternative synthesis whenever possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号