首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The elastostatic problem of a mode-I crack embedded in a bimaterial with an imperfect interface is investigated. The crack is in proximity to and perpendicular to the imperfect interface, which is governed by linear spring-like relations. The Fourier transform is applied to reduce the associated mixed-boundary value problem to a singular integral equation with Cauchy kernel. By numerically solving the resulting equation, stress intensity factors near both crack tips are evaluated. Obtained results reveal that the stress intensity factors in the presence of the imperfect interface vary between that with a perfect interface and that with a completely debonding interface. Moreover, an increase in the interface parameters decreases the stress intensity factors. In particular, when crack approaches to the weakened interface closer, the stress intensity factors become larger for a sliding interface, and become larger or smaller for a Winkler interface, depending on the crack lying in a stiffer or softer material. The influences of the imperfection of the interface on the stress intensity factors for a bimaterial composed of aluminum and steel are presented graphically.  相似文献   

2.
We study the plane deformation of an elastic composite system made up of an anisotropic elliptical inclusion and an anisotropic foreign matrix surrounding the inclusion. In order to capture the influence of interface energy on the local elastic field as the size of the inclusion approaches the nanoscale, we refer to the Gurtin-Murdoch model of interface elasticity to describe the inclusion-matrix interface as an imaginary and extremely stiff but zero-thickness layer of a finite stretching modulus. As opposed to isotropic cases in which the effects of interface elasticity are usually assumed to be uniform (described by a constant interface stretching modulus for the entire interface), the anisotropic case considered here necessitates non-uniform effects of interface elasticity (described by a non-constant interface stretching modulus), because the bulk surrounding the interface is anisotropic. To this end, we treat the interface stretching modulus of the anisotropic composite system as a variable on the interface curve depending on the specific tangential direction of the interface. We then devise a unified analytic procedure to determine the full stress field in the inclusion and matrix, which is applicable to the arbitrary orientation and aspect ratio of the inclusion, an arbitrarily variable interface modulus, and an arbitrary uniform external loading applied remotely. The non-uniform interface effects on the external loading-induced stress distribution near the interface are explored via a group of numerical examples. It is demonstrated that whether the nonuniformity of the interface effects has a significant effect on the stress field around the inclusion mainly depends on the direction of the external loading and the aspect ratio of the inclusion.  相似文献   

3.
内聚力界面单元与复合材料的界面损伤分析   总被引:21,自引:3,他引:21  
周储伟  杨卫  方岱宁 《力学学报》1999,31(3):372-377
推导了一种基于内聚力模型无厚的界面单元,用来模拟复合材料纤维与基体之间的界面层.研究了纤维周期分布的复合材料受横向荷载时,在界面不同的强韧性条件下其界面损伤演化的规律和对复合材料整体性质的影响  相似文献   

4.
A work-of-fracture method using three-point bend beam (3PBB) specimen, commonly employed to determine the fracture energy of concrete, is adapted to evaluate the mode-I cohesive fracture of fiber reinforced plastic (FRP) composite–concrete adhesively bonded interfaces. In this study, a bilinear damage cohesive zone model (CZM) is used to simulate cohesive fracture of FRP–concrete bonded interfaces. The interface cohesive process damage model is proposed to simulate the adhesive–concrete interface debonding; while a tensile plastic damage model is used to account for the cohesive cracking of concrete near the bond line. The influences of the important interface parameters, such as the interface cohesive strength, concrete tensile strength, critical interface energy, and concrete fracture energy, on the interface failure modes and load-carrying capacity are discussed in detail through a numerical finite element parametric study. The results of numerical simulations indicate that there is a transition of the failure modes controlling the interface fracture process. Three failure modes in the mode-I fracture of FRP–concrete interface bond are identified: (1) complete adhesive–concrete interface debonding (a weak bond), (2) complete concrete cohesive cracking near the bond line (a strong bond), and (3) a combined failure of interface debonding and concrete cohesive cracking. With the change of interface parameters, the transition of failure modes from interface debonding to concrete cohesive cracking is captured, and such a transition cannot be revealed by using a conventional fracture mechanics-based approach, in which only an energy criterion for fracture is employed. The proposed cohesive damage models for the interface and concrete combined with the numerical finite element simulation can be used to analyze the interface fracture process, predict the load-carrying capacity and ductility, and optimize the interface design, and they can further shed new light on the interface failure modes and transition mechanism which emulate the practical application.  相似文献   

5.
A general method is presented for the analytical solution of a piezoelectric screw dislocation located within one of two joined piezoelectric half-planes. The bonding along the half-plane is considered to be imperfect with the assumption that the imperfect interface is mechanically compliant and dielectrically weakly (or highly) conducting. For a mechanically compliant interface tractions are continuous but displacements are discontinuous across the imperfect interface. In this context, jumps in the displacement components are assumed to be proportional to their respective interface traction components. Similarly, for a dielectrically weakly conducting interface the normal electric displacement is continuous but the electric potential is discontinuous across the interface. The jump in electric potential is proportional to the normal electric displacement. In contrast, for a dielectrically highly conducting interface the electric potential is continuous across the interface whereas the normal electric displacement has a discontinuity across the interface which is proportional to a certain differential expression of the electric potential. Explicit expressions are derived for the complex field potentials. The results show that there are two dimensionless parameters measuring the interface “rigidity” as compared to one for the purely elastic case. When the imperfect interface is compliant and weakly conducting, the two dimensionless parameters can be positive real values or complex conjugates with positive real parts. When the imperfect interface is compliant and highly conducting the two dimensionless parameters can only be positive real values. An expression for the image force acting on the screw dislocation due to its interaction with a compliant and weakly conducting interface is also given. It is found that the image force is only dependent on two dimensionless generalized Dundurs constants as well as two dimensionless parameters measuring the interface “rigidity”.  相似文献   

6.
In-plane elastic wave propagation in the presence of a damaged interface is investigated. The damage is modeled as a distribution of small cracks and this is transformed into a spring boundary condition. First the scattering by a single interface crack is determined explicitly in the low frequency limit for the case of a plane wave normally incident to the interface. The transmission at an interface with a random distribution of small cracks is then determined and is compared to periodically distributed cracks. The cracked interface is then described by a distributed spring boundary condition. As an illustration the dispersion relation of the first modes in a thick plate with a damaged interface in the middle is given.  相似文献   

7.
The interface behavior between two stratified fluids showing a large difference in viscosity was investigated numerically. A three-dimensional numerical method for the simulation of the deformation of the interface in a stirred vessel is presented. In such a systems, the interface is distorted by hydrodynamic stresses and pressure changes. Different regimens of agitation were employed to explore the response of the interface, where the boundary between them is preserved and break up is avoided. The numerical scheme presented explicitly solves the Navier–Stokes equations for an incompressible fluid whilst the convection-diffusion part is treated through a Level-Set method along a moving and deforming interface. The spatial discretization was carried out by implementing a Runge–Kutta method in a second order scheme, along as a Weighted Essentially Non-Oscillatory approach. In addition, surface tension effects were included to observe its influence on the interface response. It was found that due the effect of inertia the interface is reshaped towards the vertical direction, in this process the interface experiences high-pressure gradients, which drag the interface in the upward direction. The numerical methodology was validated by comparison of simulations and experimental measurements of an interface deforming at two low Reynolds number. The results shown that the algorithm is able to resolve accurately the detailed features of the distorted fluid interfaces.  相似文献   

8.
王帅  姚寅  杨亚政  陈少华 《力学学报》2017,49(5):978-984
界面能密度是表征纳米复合材料与结构界面力学性质的重要物理量.采用分子动力学方法计算了不同面心立方金属晶体构成的双材料纳米薄板结构的界面能密度,分析了界面晶格结构形貌变化及界面效应对原子势能的影响.结果表明:双材料纳米薄板界面具有周期性褶皱状疏密相间的晶格结构形貌,界面上原子势能亦呈现周期性分布特性,而靠近界面的两侧原子势能与板内原子势能具有明显差异.拉格朗日界面能密度和欧拉界面能密度均随双层薄板厚度的增加而增加,最终趋向于块体双材料结构的界面能密度.  相似文献   

9.
结合材料的破坏通常都是从界面或其附近发生的,但界面破坏的机理及其评价准则尚未十分清楚.采用分子动力学模拟方法,可以对结合材料的界面破坏过程进行模拟,从而获得结合材料的界面应力和界面破坏之间的关系.界面破坏可以分为奇异应力场作用下的破坏,和界面应力集中引起的破坏两种.虽然在分子动力学模拟中采用了高度简化的界面模型,但对界面破坏过程的模拟,仍可以帮助人们获得结合材料界面破坏过程的规律性认识.分别模拟远场作用下界面上存在初始裂纹和界面附近存在初始裂纹两种情况下的界面破坏,根据分子动力学模拟结果,提出了一个结合材料界面破坏的准则.  相似文献   

10.
The objective of this contribution is to develop a thermodynamically consistent theory for general imperfect coherent interfaces in view of their thermomechanical behavior and to establish a unified computational framework to model all classes of such interfaces using the finite element method. Conventionally, imperfect interfaces with respect to their thermal behavior are often restricted to being either highly conducting (HC) or lowly conducting (LC) also known as Kapitza. The interface model here is general imperfect in the sense that it allows for a jump of the temperature as well as for a jump of the normal heat flux across the interface. Clearly, in extreme cases, the current model simplifies to HC and LC interfaces. A new characteristic of the general imperfect interface is that the interface temperature is an independent degree of freedom and, in general, is not a function of only temperatures across the interface. The interface temperature, however, must be computed using a new interface material parameter, i.e., the sensitivity. It is shown that according to the second law, the interface temperature may not necessarily be the average of (or even between) the temperatures across the interface. In particular, even if the temperature jump at the interface vanishes, the interface temperature may be different from the temperatures across the interface. This finding allows for a better, and somewhat novel, understanding of HC interfaces. That is, a HC interface implies, but is not implied by, the vanishing temperature jump across the interface. The problem is formulated such that all types of interfaces are derived from a general imperfect interface model, and therefore, we establish a unified finite element framework to model all classes of interfaces for general transient problems. Full details of the novel numerical scheme are provided. Key features of the problem are then elucidated via a series of three-dimensional numerical examples. Finally, we recall since the influence of interfaces on the overall response of a body increases as the scale of the problem decreases, this contribution has certain applications to nano-composites and also thermal interface materials.  相似文献   

11.
反平面剪切作用下双材料滑动界面的细观力学模型   总被引:1,自引:0,他引:1  
陈怀智  仲政  王旭 《力学季刊》2003,24(2):227-230
非理想粘结界面对多相材料力学性能具有重要影响。对于双材料间含众多随机分布微裂纹的界面,宏观上可以等效为连续损伤的弱界面,其两侧的面力连续而位移有间断。只有切线方向的位移间断,而法线方向位移连续的弱界面称之为滑动界面。在反平面剪切的作用下,我们证明了对于含有随机分布微裂纹的弹性双材料界面在宏观上等效为线弹簧型滑动界面,并获得了滑动界面柔度的一般表达式。利用Mori—Tanaka方法和广义自洽方法,我们研究了滑动界面柔度系数和微裂纹密度的关系。对这两种方法所得的结果进行比较发现,Mori—Tanaka方法得到的界面柔度比广义自洽方法得到的界面柔度大。当裂纹密度比较小时,这两种方法求得的界面柔度很接近。两种方法的结果都表明,界面柔度随裂纹密度的增加而增加。Mori—Tanaka方法比广义自治方法求解更为简便。  相似文献   

12.
This paper presents a PIV (particle image velocimetry) image processing method for measuring flow velocities around an arbitrarily moving body. This image processing technique uses a contour-texture analysis based on user-defined textons to determine the arbitrarily moving interface in the particle images. After the interface tracking procedure is performed, the particle images near the interface are transformed into Cartesian coordinates that are related to the distance from the interface. This transformed image always has a straight interface, so the interrogation windows can easily be arranged at certain distances from the interface. Accurate measurements near the interface can then be achieved by applying the window deformation algorithm in concert with PIV/IG (interface gradiometry). The displacement of each window is evaluated by using the window deformation algorithm and was found to result in acceptable errors except for the border windows. Quantitative evaluations of this method were performed by applying it to computer-generated images and actual PIV measurements.  相似文献   

13.
We analyze the motion of a sharp interface between fresh and salt groundwater in horizontal, confined aquifers of infinite extend. The analysis is based on earlier results of De Josselin de Jong (Proc Euromech 143:75–82, 1981). Parameterizing the height of the interface along the horizontal base of the aquifer and assuming the validity of the Dupuit–Forchheimer approximation in both the fresh and saltwater, he derived an approximate interface motion equation. This equation is a nonlinear doubly degenerate diffusion equation in terms of the height of the interface. In that paper, he also developed a stream function-based formulation for the dynamics of a two-fluid interface. By replacing the two fluids by one hypothetical fluid, with a distribution of vortices along the interface, the exact discharge field throughout the flow domain can be determined. Starting point for our analysis is the stream function formulation. We derive an exact integro-differential equation for the movement of the interface. We show that the pointwise differential terms are identical to the approximate Dupuit–Forchheimer interface motion equation as derived by De Josselin de Jong. We analyze (mathematical) properties of the additional integral term in the exact interface motion formulation to validate the approximate Dupuit–Forchheimer interface motion equation. We also consider the case of flat interfaces, and we study the behavior of the toe of the interface. In particular, we give a criterion for finite or infinite speed of propagation.  相似文献   

14.
In the following analysis, we present a rigorous solution for the problem of a circular elastic inclusion surrounded by an infinite elastic matrix in finite plane elastostatics. The inclusion and matrix are separated by a circumferentially inhomogeneous imperfect interface characterized by the linear spring-type imperfect interface model where the interface is such that the same degree of imperfection is realized in both the normal and tangential directions. Through the use of analytic continuation, a set of first-order coupled ordinary differential equations with variable coefficients are developed for two analytic potential functions. The unknown coefficients of the potential functions are determined from their analyticity requirements and some additional problem-specific constraints. An example is then presented for a specific class of interface where the inclusion mean stress is contrasted between the homogeneous interface and inhomogeneous interface models. It is shown that, for circumstances where a homogeneously imperfect interface may not be warranted, the inhomogeneous model has a pronounced effect on the mean stress within the inclusion.  相似文献   

15.
微管中非混溶两种流体运动界面的特征   总被引:1,自引:0,他引:1  
以平流泵为压力源,在不同管径的石英微管中进行流动试验,显微镜观察和拍摄水-气界面和油-水界面,在微米尺度下进行了不同流速的运动界面实验,研究了微管中非混溶两种流体运动界面的特征,以及润湿性对流体在微管中流动界面的影响.实验中观察到了润湿界面的滞后现象,即界面随流速的不同而改变的现象.实验结果表明:水在微管中流动的气液界面随着流速的不同形状发生改变,流速较小时,界面基本保持为凹液面;随着流速的增加,液面由凹液面向平液面发展,进而发展为凸液面.在表面张力的作用下,微管的尺寸越小,两种流体的性质差别越大,界面的润湿滞后现象越不明显,讨论了界面和润湿滞后存在的问题和可能的应用.  相似文献   

16.
The interaction of anti-plane elastic SH waves with a periodic array of interface cracks in a multi-layered periodic medium is analyzed in this paper. A perfect periodic structure without interface cracks is first studied and the transmission displacement coefficient is obtained based on the transfer matrix method in conjunction with the Bloch-Floquet theorem. This is then generalized to a single and periodic distribution of cracks at the center interface and the result is compared with that of perfect periodic cases without interface cracks. The dependence of the transmission displacement coefficient on the frequency of the incident wave, the influences of material combination, crack configuration and incident angle are discussed in detail. Compared with the corresponding perfect periodic structure without interface cracks, a new phenomenon is found in the periodic layered system with a single and periodic array of interface cracks.  相似文献   

17.
关于土—结相互作用界面力学行为的数值模拟   总被引:9,自引:0,他引:9  
根据土 -结 (桩 )相互作用典型的界面力学行为特点——两者相互作用直至剪切破坏的滑动面一般都是在土体一侧内部发生的 ,滑动层的厚薄与土性及结构物表面粗糙度等有关等 ,提出了把二者所谓相互作用的界面在概念上做广义化的处理 ,即泛化为一有限的区域 ,认为结构与土体相互作用的界面应是一个广义的相互作用影响范围而非绝对地仅只限于两者的相互接触界面 ,两者间相互作用的界面行为可近似地通过这有限薄层范围内土体材料的本构行为来模拟 ,从而形成了本文关于土 -结相互作用界面行为的模拟关键实质上可以归结为土体的非线性本构行为及其数值分析途径的研究等观点 ,仅供同行参考  相似文献   

18.
We examine the plane strain deformations of a bimaterial system consisting of a line edge dislocation interacting with a flat interface between two dissimilar isotropic half-planes in which the additional effects of interface elasticity are incorporated into the model of deformation. The entire system is assumed to be free of any external loading. Despite the fact that it is generally accepted that the separate interface modulus describing interface elasticity is permitted to take negative values, we show that simple closed-form solutions for the dislocation-induced stress field and the image force acting on the dislocation are available only when the interface modulus is assumed to be positive; the corresponding system admits no valid solutions when the interface modulus is negative. We present several numerical examples to illustrate our solutions. Additionally, we show that the influence of interface elasticity on the dislocation-induced interfacial stress field decays with increasing hardness of the adjoining half-plane (free of the dislocation). Moreover, we find that for a given (positive) in-plane interface modulus, the corresponding interface effects on the image force (acting on the dislocation) can reach maximum or minimum values when the Burgers vector of the dislocation is either parallel or perpendicular to the interface.  相似文献   

19.
Imagine a void at an interface, separating an outwardly growing oxide and a substitutional solid solution of two metallic elements A and B. Assume the metal interface oxidizes, but the void-free surface does not. Interdiffusion inside the metal, and misfit dislocation activities at the oxidizing interface, both generate a stress-free strain rate field. The compositional and material constraints in the presence of a non-oxidizing void give rise to a multi-axial tensile stress field, while a viscoplastic strain field arises to relax stress. The tensile stress at the interface enforces a concave curvature near the void tip through the continuity condition of the chemical potential. Atoms interflow along the void surface under the combined action of curvature, stress and composition gradients. They enter the metal/oxide interface and flow under the action of local stress, curvature and composition fields. The void grows. The stress at the interface relaxes, and the interface recedes partially and non-uniformly. Interfacial voiding upon cationic-selective oxidation is a long-standing topic in the world of thermal barrier coating and interconnect systems. This paper develops governing equations, within the alloy, for stress generation upon composition evolution and induced plastic strain. Governing equations at the interface and the void surface are next formulated to describe a moving boundary problem that accounts for the simultaneous void extension and interface recession. These governing equations are boundary conditions for the bulk formulation.  相似文献   

20.
Interface imperfection can significantly affect the mechanical properties and failure mechanisms as well as the strength and toughness of nanocomposites. The elastic behavior of a screw dislocation in nanoscale coating with imperfect interface is studied in the three-phase composite cylinder model. The interface between inner nanoin- homogeneity and intermediate coating is assumed as perfectly bonded. The bonding between intermediate coating and outer matrix is considered to be imperfect with the assumption that interface imperfection is uniform, and a linear spring model is adopted to describe the weakness of imperfect interface. The explicit expression for image force acting on dislocation is obtained by means of a complex variable method. The analytic results indicate that inner interface effect and outer interface imperfection, simultaneously taken into account, would influence greatly image force, equilibrium position and stability of dislocation, and various critical parameters that would change dislocation stability. The weaker interface is a very strong trap for glide dislocation and, thus, a more effective barrier for slip transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号