首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Acrylic polymers, including poly(methyl methacrylate), poly(2,2,2-trifluoroethyl methacrylate), poly( N,N'-dimethyaminoethyl methacrylate), and poly(2-hydroxyethyl methacrylate) were grafted from flat nickel and copper surfaces through surface-initiated atom transfer radical polymerization (ATRP). For the nickel system, there was a linear relationship between polymer layer thickness and monomer conversion or molecular weight of "free" polymers. The thickness of the polymer brush films was greater than 80 nm after 6 h of reaction time. The grafting density was estimated to be 0.40 chains/nm2. The "living" chain ends of grafted polymers were still active and initiated the growth of a second block of polymer. Block copolymer brushes with different block sequences were successfully prepared. The experimental surface chemical compositions as measured by X-ray photoelectron spectroscopy agreed very well with their theoretical values. Water contact angle measurements further confirmed the successful grafting of polymers from nickel and copper surfaces. The surface morphologies of all samples were studied by atomic force microscopy. This study provided a novel approach to prepare stable functional polymer coatings on reactive metal surfaces.  相似文献   

2.
In an effort to prepare electrically conductive nanofiber and nanotube materials, polypyrrole/poly(methyl methacrylate) coaxial fibers have been prepared using polymer fibers produced from an electrospinning process. Poly(methyl methacrylate) (PMMA) fibers with an average diameter of 230 nm were initially fabricated by electrospinning as core materials. The PMMA fibers were subsequently coated as templates with a thin layer of polypyrrole (PPy) by in-situ deposition of the conducting polymer from aqueous solution. Hollow PPy tubes were produced by dissolution of the PMMA core from PPy/PMMA coaxial fibers. High-temperature (1000 degrees C) treatment under inert atmosphere converted PPy/PMMA coaxial fibers into carbon tubes by complete decomposition of PMMA fiber core and carbonization of the PPy wall. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and FT-IR spectroscopy confirmed the formation of the PPy/PMMA coaxial fibers, PPy tubes, and carbon tubes.  相似文献   

3.
A new approach, combining metal coordination with the molecular imprinting technique, was developed to prepare affinity materials. Magnetic poly(glycidyl methacrylate) microspheres in monosize form were used for specific recognition toward the target protein. The magnetic poly(glycidyl methacrylate) microspheres were prepared by dispersion polymerization in the presence of magnetite nanopowder. Surface imprinted magnetic poly(glycidyl methacrylate) microspheres based on metal coordination were prepared and used for the selective recognition of human serum albumin. Iminodiacetic acid was used as the metal coordinating agent and human serum albumin was anchored by Cu2+ ions on the surface of magnetic poly(glycidyl methacrylate) microspheres by metal coordination. The magnetic poly(glycidyl methacrylate) microspheres were coated with a polymer formed by condensation of tetraethyl orthosilicate and 3‐aminopropyltrimethoxysilane. The human serum albumin imprinted magnetic poly(glycidyl methacrylate) microspheres were characterized by scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy and particle size analysis. The maximum adsorption capacity of human serum albumin imprinted magnetic poly(glycidyl methacrylate) microspheres was 37.7 mg/g polymer at pH 6.0. The selectivity experiments of human serum albumin imprinted magnetic poly(glycidyl methacrylate) microspheres prepared with different concentrations in the presence of lysozyme, bovine serum albumin and cytochrome C were performed in order to determine the relative selectivity coefficients.  相似文献   

4.
Nanocomposites comprising high density polyethylene (HDPE) or maleic anhydride-grafted HDPE (HDMA) as the host polymers and Cloisite® 20A (20A) as the organoclay filler were prepared by melt-compounding, solution-blending and static annealing of polymer/clay powder mixtures. The dependence of their structure and morphology on the preparation conditions was studied by X-ray diffraction (XRD and SAXS), polarized optical microscopy (POM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was shown that intercalated nanocomposites based on HDPE or HDMA cannot be obtained by solution-blending, as long as solvent removal is made at room temperature. In fact, wide angle XRD patterns of solution blended composites are similar to those of mechanical blends of clay and polymer. However, as demonstrated by XRD and SAXS, fast intercalation or even complete delamination was obtained when the HDMA composites prepared from solution were annealed statically at temperatures higher than the polymer melting point. This implies that solution-blending causes efficient fragmentation of the clay agglomerates into thin tactoids (though unintercalated) homogeneously dispersed in the polymer matrix. This conclusion, supported by the finding that annealing mechanical blends of polymer and clay powders only leads to intercalated structures, was confirmed by TEM and SEM analyses. Morphology investigation revealed that, in contrast to melt-compounding, solution-blending followed by static annealing fails to produce significant orientation of clay platelets and polymer crystallites. However, repeated compression molding cycles were shown by XRD and SAXS to cause increasing levels of orientation of the platelets and the polymer matrix parallel to the sample flat surface.  相似文献   

5.
We introduce a new approach to pattern conducting polymers by combining oppositely charged conducting polymers on charged self-assembled monolayers (SAMs). The polymer resist pattern behaves as a physical barrier, preventing the formation of SAMs. The patterning processes were carried out using commercially available conducting polymers: a negatively charged PEDOT/PSS (poly(3,4-ethylene-dioxythiophene)/poly(4-stylenesulphonic acid)) and a positively charged polypyrrole (PPy). A bifunctional NH 2 (positively charged) or COOH (negatively charged) terminated alkane thiol or silane was directly self-assembled on a substrate (Au or SiO 2). A suspension of the conducting polymers (PEDOT/PSS and PPy) was then spin-coated on the top surface of the SAMs and allowed to adsorb on the oppositely charged SAMs via an electrostatic driving force. After lift-off of the polymer resist, i.e., poly(methyl methacrylate, PMMA), using acetone, the conducting polymers remained on the charged SAMs surface. Optical microscopy, Auger electron spectroscopy, and atomic force microscopy reveal that the prepared nanolines have low line edge roughness and high line width resolution. Thus, conducting polymer patterns with high resolution could be produced by simply employing charged bifunctional SAMs. It is anticipated that this versatile new method can be applied to device fabrication processes of various nano- and microelectronics.  相似文献   

6.
Polymer matrices based on poly 2-hydroxyethyl methacrylate (PHEMA) have emerged as promising materials for developing applications in biomedical and tissue engineering fields. The major criteria of a material to be used as a support matrix in tissue engineering application rests on its biocompatible, hydrophilic, and mechanically strong nature. Although a great deal of research efforts have been put into designing such materials, achieving these properties together for such a material still remains a challenge. Thus, by a judicious combination of natural and synthetic polymers, such as gelatin and copolymers of PHEMA and PAN, respectively, it has been attempted to synthesize a polymer material by redox polymerization method. The prepared polymer matrix was characterized by FTIR, scanning electron microscopy (SEM), and differential scanning calorimetry (DSC) techniques. The prepared polymeric biomaterials were assessed for their water sorption potential under varying experimental conditions such as chemical composition, pH, and temperature of the swelling bath. The diffusion mechanism of transport of water molecules arising due to solvent–polymer interaction was analyzed to predict the behavior of continuously relaxing macromolecular chains. The in vitro blood compatibility of the prepared polymeric materials was determined by methods such as blood clot formation, platelet adhesion, percent hemolysis assay, and protein–adsorption on the surface of the prepared biomaterials.  相似文献   

7.
通过正硅酸乙酯分别在聚甲基丙烯酸甲酯乳液和四氢呋喃溶液中的溶胶-凝胶反应制备出不同的聚甲基丙烯酸甲酯/二氧化硅复合材料。利用扫描电镜、透镜电镜、差热分析和热失重对试样进行了分析。结果表明,利用聚合物乳液可以获得纳米分散的聚甲基丙烯酸甲酯/二氧化硅复合材料,并且在某种程度上其分散尺度小于利用聚合物溶液获得的复合材料。同时,利用聚合物乳液来制备聚甲基丙烯酸甲酯/二氧化硅杂化材料更有利于凝胶过程中二氧化硅网络的形成。  相似文献   

8.
Micron-sized polystyrene or PS particles were first prepared by dispersion polymerization. Then a series of polystyrene/poly(styrene-2-hydroxyethyl methacrylate) or PS/P(S-HEMA) composite polymer particles was prepared by seeded copolymerization using different amounts of 2-hydroxyethyl methacrylate (HEMA) at the constant core/shell ratio of 1/0.5. The produced PS seed and composite polymer particles were characterized by transmission electron microscopy. Adsorption behaviors of some biologically active macromolecules were studied under similar conditions. In each case the magnitude of adsorption on composite polymer particles decreased with the increase in HEMA content in the recipe, which means that the hydrophobic interaction between the surface of the particles and biomolecules decreased. The specific activities of trypsin aqueous solution and adsorbed trypsin on PS seed and composite polymer particles prepared with different HEMA contents were also measured and compared. The activity of adsorbed trypsin on composite polymer particles improved significantly with the incorporation of hydrophilic HEMA.  相似文献   

9.
This is the first report concerning the use of vinyl polyperoxide, namely, poly(methyl methacrylate) peroxide (PMMAP), as a thermal initiator for the synthesis of active polymer PMMAP‐PS‐PMMAP by free‐radical polymerization with styrene. The polymerizations have been carried out at different concentrations of macroinitiator PMMAP. The active polymers have been characterized by 1H NMR, DSC, thermogravimetric analysis, and gel permeation chromatography. PMMAP‐PS‐PMMAP is further used as the thermal macroinitiator for the preparation of another block copolymer, PMMA‐b‐PS‐b‐PMMA, by reacting the active polymers with methyl methacrylate. The block copolymers have been synthesized by varying the concentrations of the active polymers. The mechanism of block copolymers has been discussed, which is also supported by thermochemical calculations. Studies on the surface texture and morphology of the block copolymer of polystyrene (PS) and PMMA material have been carried out using scanning electron microscopy. Furthermore, in this article, a blend of the same constituent materials (PS and PMMA) in proportions (v/v) similar to that contained in block copolymers has been formulated, and the morphology and surface textures of these materials were also investigated. A comparative microscopical evaluation between two processing methods was done for a better understanding of the processing route dependence of the microstructures. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 546–554, 2001  相似文献   

10.
Electrochemical studies on PVC/PVdF blend-based polymer electrolytes   总被引:1,自引:0,他引:1  
In recent years, special attention has been focused on the development of gel polymer electrolytes consisting of host polymers such as poly (acrylonitrile), PVC, poly (methyl methacrylate), poly (vinylidene fluoride) (PVdF), etc., as they may be found to have unique applications in consumer electronic and electric vehicle products. In the present study, blend-based polymer electrolytes composed of PVC, PVdF, NaClO4, and propylene carbonate is prepared using the solvent casting technique. The thermal behaviors of PVC/PVdF polyblend films have been examined using differential scanning calorimetry and scanning electron microscopy. Miscibility studies were performed using X-ray diffraction and Fourier transform infrared. The role of interaction between polymer hosts on conductivity is discussed using the results of AC impedance studies.  相似文献   

11.
孟长功 《高分子科学》2014,32(3):315-320
Functional polymers such as polyethylene grafted glycidyl methacrylate (PE-g-GMA) and ethylene-methyl acrylate-glycidyl methacrylate terpolymer (E/MA/GMA) were used as compatibilizers in the preparation of highly filled composites of polyethylene/magnesium hydroxide(PE/MH). Comparative studies were performed on the effect of magnesium hydroxide and stearic acid on the interface within polymer and magnesium hydroxide composites. The effect of polymeric compatibilizers on the properties of the composites was studied using tensile and impact tests, torque rheological analysis, differential scanning calorimetry and environmental scanning electron microscopy (ESEM). The microstructure of highly filled PE/MH composites changed after the addition of functional polymers. The mechanical properties of the composite material increased after compatibilization. The compatibilization processes of PE-g-GMA and E/MA/GMA were different. The grafted polymer was more compatible with polyethylene, which led to a polar polymer phase. In contrast, the tercopolymer tended to adhere to the surface of MH particles.  相似文献   

12.
The article presents the modification of ash wood via surface initiated activators regenerated by electron transfer atom transfer radical polymerization mediated by elemental silver (Ag0 SI-ARGET ATRP) at a diminished catalyst concentration. Ash wood is functionalized with poly(methyl methacrylate) (PMMA) and poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) to yield wood grafted with PMMA-b-PDMAEMA-Br copolymers with hydrophobic and antibacterial properties. Fourier transform infrared (FT-IR) spectroscopy confirmed the covalent incorporation of functional ATRP initiation sites and polymer chains into the wood structure. The polymerization kinetics was followed by the analysis of the polymer grown in solution from the sacrificial initiator by proton nuclear magnetic resonance (1H NMR) and gel permeation chromatography (GPC). The polymer layer covalently attached to the wood surface was observed by scanning electron microscopy (SEM). The hydrophobic properties of hybrid materials were confirmed by water contact angle measurements. Water and sodium chloride salt aqueous solution uptake tests confirmed a significant improvement in resistance to the absorption of wood samples after modification with polymers. Antibacterial tests revealed that wood-QPDMAEMA-Br, as well as wood-PMMA-b-QPDMAEMA-Br, exhibited higher antibacterial activity against Gram-positive bacteria (Staphylococcus aureus) in comparison with Gram-negative bacteria (Escherichia coli). The paper presents an economic concept with ecological aspects of improving wood properties, which gives great opportunities to use the proposed approach in the production of functional hybrid materials for industry and high quality sports equipment, and in furniture production.  相似文献   

13.
We aimed at preparing magnetic iron oxide particles by the oxidation-precipitation method in order to encapsulate these particles in polymer matrices composed of poly(acrylamide-styrene sulfonic acid sodium salt). Nanocomposites were synthesized by the incorporation of surface treated magnetic nanoparticles in the synthesized polymers via in situ inverse mini-emulsion polymerization process. The study parameter was the ionic monomer content in the synthesized polymers. The structure and the morphology of the magnetic nanogels were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), thermal gravimetric analysis (TGA) and scanning electron microscopy (SEM). FTIR and XRD showed that pure magnetite was formed and successfully encapsulated in the composite nanoparticles. The polymer encapsulation could reduce the susceptibility to leaching and could protect the magnetite particle surfaces from oxidation. The ionic monomer content had a great effect on the magnetization behavior. Magnetite prepared by the oxidation precipitation method, of 50 nm mean particle size, was embedded successfully into the polymer nanogels with a reasonable magnetic response, as proved by vibrating sample magnetometer measurement. Magnetic nanocomposites were proven to be super-ferromagnetic materials.  相似文献   

14.
Surface modification of polymer materials for preparing microfluidic devices including poly(dimethyl siloxane) (PDMS) was investigated with phospholipids polymers such as poly(2-methacryloyloxylethyl phosphorylcholine(MPC)-co-n-butyl methacrylate) (PMB) and poly(MPC-co-2-ethylhexyl methacrylate-co-2-(N,N-dimethylamino)ethyl methacrylate) (PMED). The hydrophilicity of every surface on the polymer materials modified with these MPC polymers increased and the value of zeta-potential became close to zero. The protein adsorption on the polymer materials with and without the surface modification was evaluated using a protein mixture of human plasma fibrinogen and serum albumin. Amount of proteins adsorbed on these polymeric materials showed significant reduction by the surface modification with the MPC polymers compared to the uncoated surfaces ranging from 56 to 90%. Furthermore, we successfully prepared PDMS-based microchannel which was modified by simple coating with the PMB and PMED. The modified microchannel also revealed a significant reduction of adsorption of serum albumin. We conclude that the MPC polymers are useful for reducing unfavorable protein adsorption on microfluidic devices.  相似文献   

15.
The cyclohexane solution of PS (polystyrene) and the ethyl acetate solution of PMMA (polymethyl methacrylate) were used as flowing liquid; the ZnO/polymer hybrid colloids were successively produced by focused pulsed laser ablation of ZnO target in interface of solid and flowing liquid. As solvent in the hybrid colloids has volatized, the ZnO/polymer hybrid films were obtained. The hybrid colloids were characterized by high-resolution transmission electron microscopy (HRTEM) and select-area electron diffraction (SEAD). The results show a good dispersion of the ZnO nanoparticles in the polymer matrix. The hybrid films were characterized by fluorescence spectrum, Fourier transform infrared spectroscopy (FTIR) spectroscopy, thermogravimetry with FTIR (TG/FTIR), and X-ray photoelectron spectrum. The results show the ZnO/polymer hybrid films can radiate strong blue light under ultraviolet. Meanwhile, the ZnO/polymer hybrid films have higher chemical stability than ZnO nanoparticles because nano-ZnO nanoparticles were enwrapped by polymers. In addition, the ZnO hybrid films have higher thermal stability then the related pure polymers because of strong interaction among ZnO nanoparticles and polymers.  相似文献   

16.
Methacrylate‐based networked polymers having ionic liquid structures were prepared by radical copolymerization of methyl methacrylate (MMA) with multifunctional crosslinkers: ethyleneglycol dimethacrylate (EGDMA), trimethylolpropane trimethacrylate (TMPTMA), or triethyleneglycol dimethacrylate (TEGDMA), in the presence of 1‐ethyl‐3‐methylethyl‐1‐imidazolium bis(trifluoromethane)sulfonyl imide (EMImTFSI). The fundamental physical properties of several film samples prepared by varying the monomer composition and ionic liquid content were investigated. The obtained materials became turbid with increasing crosslinker content and ionic liquid content. Their ionic conductivity increased with increasing ionic liquid content, while it was almost independent of the crosslinker content. EGDMA‐derived materials and TMPTMA‐derived materials showed higher ionic conductivity than TEGDMA‐derived materials. TMPTMA‐derived materials showed higher thermal stability than EGDMA or TEGDMA‐derived materials. EGDMA and TMPTMA‐derived materials were stiffer than the TEGDMA‐derived materials. The elastic modulus of the film samples increased but the film became more brittle with the increase of crosslinker content. Scanning electron microscopy and atomic force microscopy observation revealed that phase separation of networked polymers and ionic liquid occurred in the highly crosslinked samples, and the phase separation structures became larger in scale with the increase of crosslinking density. This phase separation was considered to have a strong effect on the mechanical properties of the film samples. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

17.
Efficient azo-linked polymers of 2,4,6-tris(4-nitrophenyl)pyridine-melamine (TNPP-M), and 2,4,6-tris(4-nitrophenyl)pyridine-sulfanilamide (TNPP-S) were prepared by condensation polymerization technique from TNPP-based monomer reacting with amines as melamine and sulfanilamide. The synthesized polymer structure was confirmed by various experimental techniques, such as Fourier transform infrared spectroscopy, solid-state 13C NMR, and X-ray diffraction (XRD). Particle size was calculated using Williamson–Hall (W–H) plot from powder XRD pattern. The thermal analysis and scanning electron microscopy of TNPP-S polymer displayed an excellent thermal stability and capsule-like morphology was observed. UV/visible absorptions of TNPP-S and TNPP-M polymers exhibit two bands, a strong band at 365?nm, and a shoulder at 385?nm for TNPP-M; these polymeric semiconducting materials could be useful for solar fuel cell applications.  相似文献   

18.
Molecularly imprinted polymers for indole-acetic acid were prepared by co-polymerizing N,N-dimethylaminoethyl methacrylate, 2-hydroxyethyl methacrylate (HEMA), and ethylene glycol dimethacrylate. The dependence of the affinity and selectivity of the imprinted polymers on HEMA content was evaluated chromatographically. The affinity was improved by increasing the HEMA content; the selectivity of the imprinted polymer was best when the HEMA content was approximately 30%, irrespective of monomer content.  相似文献   

19.
氟硅协同改性丙烯酸树脂的合成与防污性能研究   总被引:1,自引:0,他引:1  
以甲基丙烯酸十二氟庚酯(FMA)、甲基丙烯酸聚二甲基硅氧烷基酯(SMA)、甲基丙烯酸甲酯、丙烯酸正丁酯、甲基丙烯酸正丁酯和丙烯酸乙酯为共聚单体,通过溶液聚合反应合成出侧链含有机氟、有机硅的丙烯酸树脂.通过核磁共振氢谱(1H-NMR)、核磁共振氟谱(19F-NMR)、红外光谱(FTIR)对聚合物的结构进行了表征.通过扫描电镜(SEM)、接触角测试和生物评价等方法,探讨了FMA、SMA含量对树脂涂膜性能的影响.结果表明氟硅改性的丙烯酸树脂比单独含氟或含硅改性的丙烯酸树脂具有更低的表面能,而且氟硅改性的丙烯酸树脂涂膜比商业化的聚硅氧烷涂膜具有更好的防污性能.  相似文献   

20.
纤维素/明胶复合膜的超分子结构与性能   总被引:1,自引:0,他引:1  
通过一种绿色的方法在NaOH/尿素水体系中制备出纤维素和明胶组成的复合膜(C/G),并且证明这两种大分子间存在强的氢键作用,导致明胶耐水性明显改善.同时,用戊二醛作为交联剂对复合膜化学交联,进一步提高其抗水性.通过红外光谱(FTIR)、紫外光谱(UV-Vis)、13C固体核磁共振谱、扫描电镜(SEM),力学和溶胀测试对...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号