首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W Shen  M Li  C Ye  L Jiang  Y Song 《Lab on a chip》2012,12(17):3089-3095
Integrating photonic crystals (PC) into microfluidic systems has attracted immense interest for its novel functions. However, it is still a great challenge to fabricate PC microfluidic chips rapidly with complex functions. In this work, a direct-writing colloidal PC microchannel was firstly achieved by inkjet printing and was used for the surface-tension-confined microfluidic immune assay. PC channels with different structure colors have been successfully integrated on one chip. The fabricated chip has the advantages of rapid fabrication, quick fluidic transport and can monitor the fluidic fluxion using the naked eye. Utilizing this PC microfluidic chip, a colorimetric label-free immune assay was realized without nonspecific adsorption interference of the target.  相似文献   

2.
In this paper, we report the progress in using paper sizing chemistry to fabricate patterned paper for chemical and biological sensing applications. Patterned paper sizing uses paper sizing agents to selectively hydrophobize certain area of a sheet. The hydrophilic-hydrophobic contrast of the pattern so created has an excellent ability to control capillary penetration of aqueous liquids in channels of the pattern. Incorporating this idea with digital ink jet printing technique, a new fabrication method of paper-based microfluidic devices is established. Ink jet printing can deliver biomolecules and chemicals with precision into the microfluidic patterns to form biological/chemical sensing sites within the patterns, forming the complete sensing devices. This study shows the potential of combining paper sizing chemistry and ink jet printing to produce paper-based sensors at low cost and at commercial volume.  相似文献   

3.
An array of the colloidal photonic crystals was directly fabricated using an ink-jet printing. The colloidal ink droplets containing the monodispersed polystyrene latex particles were selectively deposited on a hydrophobic surface. Solvent evaporation from each ink droplet leads to a formation of microdome-shaped colloidal assembles of close-packed structures. Microspectroscopic analysis has confirmed that the individual assembly serves as a photonic crystal and its optical properties can be correlated with the microstructural features. Unlike other techniques of patterned growth of colloidal photonic crystal, the substrate does not need to be patterned first and no template is needed in the direct writing by the ink-jet printing. Using our strategy, we have rapidly produced the colloidal photonic crystal microarrays composed of different-sized spheres addressably patterned on the same substrate.  相似文献   

4.
The use of polydimethylsiloxane (PDMS) in microfluidic devices is extensive in academic research. One of the most fundamental treatments is to expose PDMS to plasma oxidation in order to render its surface temporarily hydrophilic and capable of permanent bonding. Here, we show that changes in the surface chemistry induced by plasma oxidation can spatially be counteracted very cleanly and reliably in a scalable manner by subsequent microcontact printing of residual oligomers from a PDMS stamp. We characterize the surface modifications through contact angle, atomic force microscopy, X-ray photoelectron spectroscopy, and bond-strength measurements. We utilize this approach for negating the bonding of a flexible membrane layer within an elastomeric valve and demonstrate its effectiveness by integration of over one thousand normally closed elastomeric valves within a single substrate. In addition, we demonstrate that surface energy patterning can be used for "open microfluidic" applications that utilize spatial control of surface wetting.  相似文献   

5.
Choi CJ  Cunningham BT 《Lab on a chip》2006,6(10):1373-1380
A method for simultaneously integrating label-free photonic crystal biosensor technology into microfluidic channels by a single-step replica molding process is presented. By fabricating both the sub-micron features of the photonic crystal sensor structure and the >10 microm features of a flow channel network in one step at room temperature on a plastic substrate, the sensors are automatically self-aligned with the flow channels, and patterns of arbitrary shape may be produced. By measuring changes in the resonant peak reflected wavelength from the photonic crystal structure induced by changes in dielectric permittivity within an evanescent field region near its surface, detection of bulk refractive index changes in the fluid channel or adsorption of biological material to the sensor surface is demonstrated. An imaging detection instrument is used to characterize the spatial distribution of the photonic crystal resonant wavelength, gathering thousands of independent sensor readings within a single fluid channel.  相似文献   

6.
7.
We report the formation of microscopic patterns of substrate-supported, 3D planar colloidal crystals using physical confinement in conjunction with surfaces displaying predetermined binary patterns of hydropholicity. The formation process involves a primary self-assembly wherein nano- and microscale colloids order into a photonic fcc lattice via capillary interactions followed by a secondary template-induced crystal cleavage step. Following this method, arbitrary arrays of pattern elements, which preserve structural and orientational properties of the parent crystal, can be easily obtained.  相似文献   

8.
Main possibilities of thermal lens microscopy, a highly sensitive method of molecular absorption spectroscopy, in chemical analysis in microfluidic chips are shown.  相似文献   

9.
Review: Aptamers in microfluidic chips   总被引:1,自引:0,他引:1  
This review, covering reports published from 2002 to August 2010, shows how aptamers have made significant contributions in the improvements of microfluidic chips for affinity extraction, separations and detections. Furthermore, microfluidic chip methods for studying aptamer-target interactions and performing aptamer selections have also been summarized. Accordingly, research vacancies and future development trends in these areas are discussed.  相似文献   

10.
11.
In this study, we successfully produced the chitosan microfibers using the proposed various angles of microfluidic chip, which was also been simulated. By controlling the core and sheath flow rates, we were able to generate laminar flow of different diameters from 15 μm to 40 μm. And the diameter of chitosan microfiber was measured from 20 μm to 50 μm. The microchannel of angle 30° could produce chitosan laminar flow of a smaller diameter than the angle 60° and angle 45° at the fixed flow rates. Finally, the chitosan microfiber was chosen as scaffold and the schwann cell and fibroblast cell with chitosan microfibers were used for cell culture to test effect in tissue engineering application.  相似文献   

12.
A facile nonlithographic method for expedient fabrication of microfluidic devices of poly(dimethylsiloxane) is described. Positive-relief masters for the molds are directly printed on smooth substrates. For the formation of connecting channels and chambers inside the polymer components of the microfluidic devices, cavity-forming elements are adhered to the surfaces of the masters. Using this nonlithographic approach, we fabricated microfluidic devices for detection of bacterial spores on the basis of enhancement of the emission of terbium (III) ions.  相似文献   

13.
During the fabrication of poly(dimethylsiloxane) (PDMS)-based microfluidic chips, polymethylhydrosiloxane (PMHS) species in the control layer diffuse into the flow membrane, which contains polymethylvinylsiloxane (PMVS), and the components cross-link together to form the mechanically enhanced membrane. The diffusion course was investigated by using attenuated total reflectance FTIR and the improvement of mechanical properties of the flow membrane was studied by measuring the Young's modulus and the tensile strength.  相似文献   

14.
Shamansky LM  Davis CB  Stuart JK  Kuhr WG 《Talanta》2001,55(5):909-918
With the rapid development of micro-Total Analysis Systems (muTAS) and sensitive DNA recognition technologies, it is possible to immobilize DNA probes to small areas of surfaces other than silicon. To this end, photolithographic techniques were used to derivatize micron-sized, spatially segregated DNA recognition elements in Polydimethylsiloxane (PDMS) microfluidic structures. UV light was used to initiate attachment of a photoactive biotin molecule to the substrate surface. Once biotin was attached to a substrate, biotin/avidin/biotin chemistry was used to attach fluorescently labeled or non-labeled avidin and biotinylated DNA probes. These techniques were applied to create a prototype microfluidic sensor device that was used to separate and identify synthetic DNA targets that were fluorescently-labeled.  相似文献   

15.
Nonspherical colloids and their ordered arrays may be more attractive in applications such as photonic crystals than their spherical counterparts because of their lower symmetries, although such structures are difficult to achieve. In this letter, we describe the fabrication and characterization of colloidal crystals constructed from nonspherical polyhedrons. We fabricated such nonspherical colloidal crystals by pressing spherical polymer colloidal crystal chips at a temperature slightly lower than the glass-transition temperature (T(g)) of these polymer colloids. During this process, the polymer microspheres were distinctively transformed into polyhedrons according to their crystal structures, whereas the long-range order of the 3D lattice was essentially preserved. Because a working temperature lower than T(g) effectively prevented the colloidal crystals from fusing into films, the spherical colloidal crystals were transformed greatly under pressure, which lead to obvious change in the optical properties of colloidal crystals. Besides their special symmetry and optical properties, these nonspherical colloidal crystals can be used as templates for 2D or 3D structures of special symmetry, such as 2D nano-networks. We anticipate that this fabrication technique for nonspherical colloidal crystals can also be extended to nonspherical porous materials.  相似文献   

16.
Glow discharge in microfluidic chips for visible analog computing   总被引:1,自引:0,他引:1  
Here we present a novel visible analog computing approach for solving a wide class of shortest path problems. Using a microfluidic chip for computation, based on the lighting up of a glow discharge, the solution to maze search problems, the solution of a network shortest path and k-shortest paths problems and the practical application of finding the shortest paths between several landmarks from a street map are presented. The solution and visible display (in real time) for these problems shows only a small difference in practical problem solving time among problems with varying differences in size.  相似文献   

17.
We report an improved convective self-assembly method for the fabrication of highly ordered, crack-free binary colloidal crystals (BCCs) and the associated inverse structures in large domains at length scales of several centimeters. With this method, BCCs can be fabricated in a non-close packed pattern and binary inverse opal films can be obtained over a centimeter scale. The presence of tetraethyl orthosilicate (TEOS) sol in the self-assembly system was found to play a significant role in the resultant structures. The pseudostop band positions are adjustable via varying the number ratio of small to large polystyrene (PS) spheres. At a given TEOS-to-PS ratio, the binary inverse opal film thickness was controllable by varying the colloidal volume fraction with an upper thickness threshold (>16 layers).  相似文献   

18.
近年来,微流控纸芯片由于低成本、便携化、检测快等优点,在需要快速检测的环境分析领域中展现出了巨大的应用前景.该综述从微流控纸芯片在环境分析中的应用角度,总结归纳了微流控纸芯片在环境分析中的最新研究进展,并展望了其在未来的发展趋势与挑战.论文内容引用150余篇源于科学引文索引(SCI)与中文核心期刊中的相关论文.该综述包...  相似文献   

19.
We have studied the assembly of 3-D colloidal crystals from binary mixtures of colloidal microspheres and highly charged nanoparticles on flat and epitaxially patterned substrates created by focused ion beam milling. The microspheres were settled onto these substrates from dilute binary mixtures. Laser scanning confocal microscopy was used to directly observe microsphere structural evolution during sedimentation, nanoparticle gelation, and subsequent drying. After microsphere settling, the nanoparticle solution surrounding the colloidal crystal was gelled in situ by introducing ammonia vapor, which increased the pH and enabled drying with minimal microsphere rearrangement. By infilling the dried colloidal crystals with an index-matched fluorescent dye solution, we generated full 3-D reconstructions of their structure including defects as a function of initial suspension composition and pitch of the patterned features. Through proper control over these important parameters, 3-D colloidal crystals were created with low defect densities suitable for use as templates for photonic crystals and photonic band gap materials.  相似文献   

20.
A study of the self-organization of colloidal particles during the evaporation of particle solutions on chemically patterned surfaces is presented. On a surface with hydrophilic and hydrophobic regions, colloidal particles form compact structures on the hydrophilic sites. When a colloidal solution containing a mixture of particles with a variation in size is used, the number density of each type of particle deposited on the hydrophilic islands after evaporation decreases with increasing particle size. This makes it possible to produce a concentration gradient of the particles on islands of different sizes. It is shown that this technique could allow for particle separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号