首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The joint influence of optical and (quasi-)static electric fields on the orientation of liquid crystal gives rise to peculiar effects. In this article we report on the generation of transient domains in liquid crystals, which are an order of magnitude larger than the size of the optical field profile. The formation of such a domain is due to the fact that the initially present optical field reverses the pre-tilt, and the voltage that is then applied gives rise to an amplification of the tilt angle. The resulting reorientation of the director strongly depends on the starting conditions of the preliminary present optical field. We demonstrate different switching conditions, depending on the relation between the incident angle of the beam and the pre-tilt angle. The resulting refractive index profiles give rise to lensing effects.  相似文献   

2.
We demonstrate homogeneous and uniform liquid crystal (LC) alignment on poly(vinylidene fluoride-trifluoroethylene) [PVDF-TrFE] films using ion-beam (IB) irradiation and a performance improvement of twisted nematic (TN) cells using IB-irradiated PVDF-TrFE films. Spontaneous ferroelectricity of the PVDF-TrFE films was modified by IB irradiation, which affected the LC alignment properties. The variation in the pre-tilt angles of the LC molecules on the IB-irradiated PVDF films is attributed to surface reformation, including defluorination and oxidation because the pre-tilt angles of LC molecules can be controlled by adjusting the fluorine content. The results of contact angle measurements supported this phenomenon. A 58% reduction in the switching voltage was observed for TN cells, indicating that the IB-irradiated PVDF-TrFE films are a promising candidate for use as an alignment layer.  相似文献   

3.
A new photo-alignment layer using a crosslinked discotic compound was demonstrated. This discotic compound exhibits excellent solubility in common organic solvents, the possibility of low temperature processing and good thermal stability. A linearly polarized long wavelength ultraviolet (LPUV) light (λ = 350 nm) was used to initiate the crosslinking process and induce liquid crystal alignment on the discotic film surface. The induced LC directors were found parallel to the electric field direction of the LPUV light. A 1.2° pre-tilt angle was achieved using a single exposure at a 30° oblique angle.  相似文献   

4.
《Liquid crystals》1997,23(5):699-708
Neutron reflectivity has been used to investigate the porosity and surface roughness of three different liquid crystal alignment layers to elucidate how they orient the director. The absorption of hexane into these alignment layers was measured by neutron reflection and the volume fraction profile of the hexane within the layers was determined using the contrast variation method. Measurements were made on rubbed polyimide and silicon monoxide (SiO) evaporated at 5 and 30 to the substrate. The porosity and surface roughness of the alignment layers were found to be correlated with the induced pre-tilt of the director. The low pre-tilt rubbed polyimide and SiO 30 alignment layers were found to be smooth, uniform and impervious to hexane, whilst the high pre-tilt SiO 5 was porous and extremely rough. These observations suggest that both polyimide and SiO 30 rely on an anisotropic interaction with the surface rather than one induced by the surface topography. In contrast, the alignment of liquid crystals by SiO 5 probably originates from an interaction between the mesogens and the rough, porous surface.  相似文献   

5.
We present in this paper an experimental and theoretical modelling study of the switching characteristics and electro-optic behaviour of chevron surface stabilized ferroelectric liquid crystal cells with planar (low pre-tilt) and non-planar (high pre-tilt) surface conditions. The visible polarized light transmission spectra were taken of the cells with glass plates coated with films of either rubbed polymer or obliquely evaporated silicon monoxide (SiO) at various applied voltages and in various stages of switching and compared with the theoretical values calculated numerically based on our director-polarization structure model for the aforementioned cells. The results provide evidence for the origin of differences in domain shape and contrast in the switching process between planar and non-planar chevron surface stabilized ferroelectric liquid crystal cells.  相似文献   

6.
In recent experiments we observed bistable switching in devices made with long pitch square gratings on one surface. It was also discovered that the switching in these devices was localized mainly at isolated edges of the square grating profile. In this paper we present an initial study of surface-induced director configurations at isolated edges of a square profile in the absence of an applied voltage. Our emphasis is on understanding the effect of edge features such as the edge depth and edge inclination in forming stable high and low pre-tilt states. Models based on a Landau-de Gennes approach were used and solutions were found through numerical simulation using finite element methods; optical response was determined, based on wide angle beam propagation methods. Results from real cells are also presented. Our results show that static defect-stabilized states exist for a range of isolated edge depths and inclination angles. In particular, a combination of deep edge depths and steep edge inclinations produce stable high and low pre-tilt director configurations.  相似文献   

7.
《Liquid crystals》2012,39(12):1799-1807
ABSTRACT

We investigated the surface modification induced by the ion-beam (IB) irradiation of a polyethylene glycol (PEG) film and its liquid crystal (LC) alignment characteristics. The X-ray photoelectron spectroscopy analysis revealed the chemical modification; as the IB incidence angle increased, the number of surface C–O bonds decreased, inducing an anisotropic dipole moment on the PEG film surface. In addition, the physical modification was demonstrated via atomic force microscopy analysis using three-dimensional images as a function of the IB incidence angle. The surface roughness was analyzed; the modification with the smoothest surface was observed for an IB incidence angle of 45°. This modification affected the LC alignment state of the PEG film, as demonstrated by the polarized optical microscopy analysis with pre-tilt angle measurements. Furthermore, for the same IB incidence angle, the residual DC measured using the capacitance–voltage curves was extremely low. Hence, a PEG film irradiated with an IB incidence angle of 45° could be a suitable LC alignment layer.  相似文献   

8.
We report on chiral-nematic mixtures containing viscous chiral dopants, composed of rigid rod-like chiral molecules, in order to solve the problem of backflow in the middle layers of the liquid crystal cells. During the study, the viscoelastic properties of the liquid crystal compositions have been optimised, as well as the helical twisting power of the chiral compounds, the anchoring energy and the pre-tilt angle of alignment materials, the ratio between the cell gap and the helical pitch (d/P0). After optimisation, we prepared test cells with low operating voltage – from 1.5 till 5.0 V, fast response time (τon + τoff) – less than 1 ms, wide operating temperature range from ?40°C till +100°C, and good thermal stability. It should be noted that the response time of the new electro-optical mode does not strongly depend on the cell gap, which is in contrast to other known operating modes. We have achieved rather linear than quadratic dependence of the response time when changing the thickness of the cell.  相似文献   

9.
In this paper we show that the director profile of a low pre-tilt surface stabilized ferroelectric liquid crystal passes through quasi-static stressed states during domain switching under direct drive conditions. Using polarized stroboscopic microscopy, we have observed two quasi-static transmission levels during a domain switching transition from dark to light. This is a result of the directors reorienting into stressed profiles both before and after the chevron interface has switched. By modelling the interaction between the elastic forces and the torque from the applied field, we have determined these voltage dependent director profiles and, by calculating their corresponding transmissivities, have shown very good agreement with the experimentally observed values.  相似文献   

10.
We discuss three topologically different methods for calculating the surface tension between a flat solid and a liquid from theoretical and computer simulation viewpoints. The first method, commonly used in experiments, measures the contact angle at which a static droplet of liquid rests on a solid surface. We present a new analysis algorithm for this method and explore the effects of line tension on the contact angle. The second method, commonly used computer simulations, uses the pressure tensor through the virial in a system where a thick, infinitely extended slab of liquid rests on a solid surface. The third method, which is original to this paper and is closest to the thermodynamic definition of surface tension, applies to a spherical solid in contact with liquid in which the flat solid is recovered by extrapolating the sphere radius to infinity. We find that the second and third methods agree with each other, while the first method systematically underestimates surface tension values.  相似文献   

11.
Liquid crystal (LC) alignment characteristics were investigated using a solution-derived lanthanum-doped zinc oxide (La:ZnO) film that was exposed to various intensities of ion-beam (IB) irradiation. At an IB intensity of 1700 eV, uniform and homogeneous LC alignment was achieved, as revealed by cross-polarized optical microscopy and pre-tilt angle measurement. Field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) were used to verify that the IB irradiation induced physical and chemical surface reformation of the La:ZnO film that relate to LC alignment. FE-SEM and AFM revealed that the IB irradiation reformed the existing surface structure into a new structure with an altered surface roughness. The XPS results showed that the van der Waals force with anchoring energy increased as the IB intensity increased, and this profoundly affected the state of LC alignment. The capacitance-voltage (C-V) hysteresis curve was measured as a function of IB intensity to characterize the accumulated charge as a residual DC. Nearly zero C-V hysteresis was achieved at an IB intensity of 1700 eV. Therefore, a solution-derived La:ZnO film with an IB intensity of 1700 eV has great potential for high-quality LC applications.  相似文献   

12.
We investigated the characteristics of a solution-processed indium-doped zinc oxide (In:ZnO) film formed via ion-beam (IB) irradiation as a liquid crystal (LC) alignment layer. The In:ZnO film was deposited using solution processing and cured at various temperatures. Uniform LC alignment was observed at all curing temperatures in cross-polarised optical microscopy images. A regular pre-tilt angle supported these results and showed homogeneous LC alignment. Several surface analyses were conducted to evaluate the effect of IB irradiation on the In:ZnO film surface. X-ray diffraction analysis showed an amorphous structure both before and after IB irradiation, and physical surface reformation was observed using atomic force microscopy. Root mean square surface roughness was reduced and a smooth surface was achieved after IB irradiation. X-ray photoelectron spectroscopy was used to detect chemical surface reformation. It was found that the IB irradiation broke the metal-oxide bonds and increased the occurrence of oxygen vacancies, which affected the van der Waals forces between the LC molecules and the In:ZnO film surface. Electrical performance was observed to identify the possibility of using the In:ZnO film in LC applications. Enhanced electro-optical performance was measured and zero residual DC voltage which was verified using a capacitance-voltage curve was achieved.  相似文献   

13.
As a model of polymer-sustained-alignment liquid crystal display (PSA-LCD), the LC cells having the polymer layers produced from the homopolymers and copolymers of 4,4?-dimethacryloyl-oxy-biphenyl (4,4?-DMABiph) and 2,6-dimethacryloyl-oxy-naphthalene (2,6-DMANaph) were prepared and investigated image sticking phenomenon with evaluations of residual direct current voltage (VrDC) and difference in pre-tilt angle before and after application of alternate current (AC) voltage (Δtilt). The VrDC was effectively improved by adding a small amount of 2,6-DMANaph to 4,4?-DMABiph because the concentrations of radicals and ions in the LC layer were decreased due to increase in the rate constant of the polymerisation with the addition of 2,6-DMANaph under UV light exposure. The Δtilt was proportionally increased with increasing the weight ratio of 2,6-DMANaph in the mixed monomers of 4,4?-DMABiph and 2,6-DMANaph. We confirmed that the range of the weight ratio for 2,6-DMANaph in the mixed monomers of 4,4?-DMABiph and 2,6-DMANaph from 10 to 25 wt% was useful for obtaining the small level of image sticking in the PSA-LCD.  相似文献   

14.
In general, the optical determination of static and advancing contact angle is made on drops applied or extended, respectively, onto a substrate through the use of thin solid needles. Although this method is used extensively, this way of dosing can be time consuming, cumbersome and if not performed meticulously can lead to erroneous results. Herein, we present an alternative way of applying drops onto substrates using a liquid jet produced by a liquid pressure dosing system acting as a “liquid needle”. We performed a comparative static contact angle study on 14 different surfaces with two different liquids (water and diiodomethane) utilizing two different ways of dosing: the conventional solid and a novel liquid needle-based technique. We found, for all but one sample, that the obtained results on μl size drops were comparable within the experimental error bars provided the liquid needle is thin enough. Observed differences are explained by the special characteristics of either way of dosing. In addition, we demonstrate how the liquid pressure-based dosing system facilitates high-speed optical advancing contact angle measurement by expanding a drop from 0.1 to 22 μl within less than 1.2 s but yet providing constant contact angle versus drop base diameter curves. The obtained results were compared with data from tensiometric dynamic Wilhelmy contact angle measurements. These data, in conjunction with sequences of live images of the dosing process of the liquid pressure dosing system, illustrate how this system can replace the solid needle by a liquid needle.  相似文献   

15.
In this study, the soft embossing method is proposed to fabricate periodical microgrooved structure on polyimide surfaces. These microgrooved polyimide surfaces are assembled to form liquid-crystal cells. It is found that the director of liquid crystals uniformly aligns along the groove direction even when the groove width is as high as 3 microm. The anchoring energy of these microgrooved polyimide surfaces is higher than that of the typical rubbed surfaces. The pretilt angle of liquid crystals is adjusted by tuning the surface polarity of the polyimide alignment layer, which is identified by the advancing contact angle of water. The surface polarity of polyimide alignment layers is manipulated by simply mixing two kinds of polyimide: a more hydrophilic one and a more hydrophobic one. It is found that the pretilt angle of liquid crystals increases along with the advancing contact angle of water on the alignment layer under the condition of a fixed surface topography.  相似文献   

16.
The capillary rise and Wilhelmy plate methods have been used to study the "surface tension" of water marbles encapsulated with polytetrafluoroethylene (PTFE) powders of 1-, 35-, and 100-μm particle size. With the capillary rise technique, a glass capillary tube was inserted into a water marble to measure the capillary rise of the water. The Laplace pressure exerted by the water marble was directly measured by comparing the heights of the capillary rise from the marble and from a flat water surface in a beaker. An equation based on Marmur's model was proposed to calculate the water marble surface tension. This method does not require the water contact angle with the supporting solid surface to be considered; it is therefore a simple but efficient method for determining liquid marble surface tension. The Wilhelmy method was used to measure the surface tension of a flat water surface covered by PTFE powder. This method offers a new angle for investigating liquid marble shell properties. A discussion on the nature and the realistic magnitude of liquid marble surface tension is offered.  相似文献   

17.
The diagonal viewing angle light leakage in a black state of in-plane switching (IPS) liquid crystal display (LCD) associated with pretilt angle has been investigated. The mechanical rubbing process with a cloth causes relatively high pretilt angle in the homogenously aligned liquid crystals (LCs) so that the tilted LC director results in increase of a light leakage in a black state at diagonal viewing angles. In this study, we theoretically estimated using classical optic theory how the light leakage in a black state at diagonal viewing angle is associated with the pretilt angle and also proposed an effective method to reduce the pretilt angle from 1.5° to 0° in rubbed IPS LCD by utilising polymer stabilisation. With this approach, we could successfully acquire a better black quality in all viewing angles as compared with normal IPS LCD.  相似文献   

18.
A new method for producing tilt angle in liquid crystal cells is proposed. The method requires a SiO vacuum deposition layer which is subsequently covered with a polyvinyl alcohol (PVA) layer, obtained by dipping in a solution. It was possible to obtain tilt angles between 7 and 30° by changing the concentration of PVA in the solution.  相似文献   

19.
《Liquid crystals》1997,22(2):185-192
A well-controlled, reproducible alignment with or without a pretilt angle is a basic need for the development of any kind of liquid crystal display. We have built an optical set-up based on the crystal rotation method. With this system we can measure the pretilt angle in nontwisted liquid crystal samples. Presentation of the experimental set-up and first results of these measurements (obtained with a precision of 0.3 ) are given for several compounds and alignment layers.  相似文献   

20.
Drop shape techniques, such as axisymmetric drop shape analysis, are widely used to measure surface properties, as they are accurate and reliable. Nevertheless, they are not applicable in experimental studies dealing with fluid configurations that do not present an apex. A new methodology is presented for measuring interfacial properties of liquids, such as surface tension and contact angles, by analyzing the shape of an axisymmetric liquid-fluid interface without use of apex coordinates. The theoretical shape of the interface is generated numerically as a function of surface tension and some geometrical parameters at the starting point of the interface, e.g., contact angle and radius of the interface. Then, the numerical shape is fitted to the experimental profile, taking the interfacial properties as adjustable parameters. The best fit identifies the true values of surface tension and contact angle. Comparison between the experimental and the theoretical profiles is performed using the theoretical image fitting analysis (TIFA) strategy. The new method, TIFA-axisymmetric interfaces (TIFA-AI), is applicable to any axisymmetric experimental configuration (with or without apex). The versatility and accuracy of TIFA-AI is shown by considering various configurations: liquid bridges, sessile and pendant drops, and liquid lenses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号