首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
H~2O+CN→HCN+OH的IRC解析及其反应动力学研究   总被引:1,自引:0,他引:1  
本文用能量梯度法,在UHF/3-21G水平上,优化了反应H~2O+CN→HCN+OH的反应物,产物及其过渡态的几何构型,得到了该反应的活化能为32.6kJ/mol, 与实验所得的测量值相一致,同时用Morokuma的数值分析方法,得到了该反应的内禀反应坐标(IRC),沿着IRC,对反应过程中体系构型的变化进行了分析,并计算IRC 运动与垂直于IRC简正振动之间的偶合常数,讨论振动频率的变化,并结合偶合常数进行分子动态学分析,用传统过渡态理论,变分过渡态理论及相关的隧道校正等方法计算该反应的速率常数,结果与实验值基本吻合(如T=763K时,K~(计算值)^(CVT/SCSAG)=3.09×10^1^0,K~(实验值)=(5.1±0.6)×10^1^0,单位为cm^3·mol^-^1·s^-^1)  相似文献   

2.
在B3LYP/6-31G(d,p)水平上优化了Cl原子与CH3COCH2Cl反应的各驻点的几何构型,并在相同水平上通过频率计算和内禀反应坐标(IRC)分析对过渡态的结构和反应物、产物的连接性进行了验证。采用高精确模型G3MP2方法进行单点能计算,构建了反应的势能剖面。计算结果表明,标题反应有抽氢反应、加成-消除反应、取代反应3种反应机理6条反应通道。利用经典过渡态理论(TST)和正则变分过渡态理论(CVT)计算了各反应通道在200~2000 K温度范围内的速率常数,并用小区率隧道效应模型(SCT)对抽氢反应进行校正。计算结果显示,反应有一定的变分效应,计算的总反应速率常数与文献报道的实验值符合得较好,速率常数的三参数表达式为k=2.33×10-19T2.54exp(567.07/T)cm3·mol-1·s-1。  相似文献   

3.
本文用从头算方法, 在RHF/3-21G分子轨道从头算法的水平上, 得到了重排反应F-C≡C-F→F~2C=C:的内禀反应坐标(IRC)。沿着IRC, 计算了体系各简正模所对应的频率(ω)以及沿IRC运动与垂直于IRC运动的简正模之间的耦合常数(BK,F); 根据传统过渡态理论、变分过渡态理论及相应的隧道效应校正, 计算了本重排反应的反应速率常数。  相似文献   

4.
马咏梅  王艳丽 《化学通报》2014,77(6):539-544
在B3LYP/6-31G(d,p)水平上优化了Cl原子与CH3COCH2Cl反应的各驻点的几何构型,并在相同水平上通过频率计算和内禀反应坐标(IRC)分析对过渡态的结构和反应物、产物的连接性进行了验证。采用高精确模型G3MP2方法进行单点能计算,构建了反应的势能剖面。计算结果表明,标题反应有抽氢反应、加成-消除反应、取代反应3种反应机理6条反应通道。利用经典过渡态理论(TST)和正则变分过渡态理论(CVT)计算了各反应通道在200~2000 K温度范围内的速率常数,并用小区率隧道效应模型(SCT)对抽氢反应进行校正。计算结果显示,反应有一定的变分效应,计算的总反应速率常数与文献报道的实验值符合得较好,速率常数的三参数表达式为k=2.33×10-19T2.54exp(567.07/T)cm3·mol-1·s-1。  相似文献   

5.
用数值方案,在RHF/3-21G分子轨道从头算法的水平上,得到了氟化异氰FNC到氟化氰FCN重排反应的反应途径(内禀反应坐标IRC).沿着IRC;讨论了反应过程中体系几何构型的变化,计算了沿IRC运动与垂直于IRC简正振动之间的耦合常数(BK,F),各振动模式对应的频率(ωK),使用统一的半经典徽扰和无限级突然(SCP-IOS)近似理论计算了在一定能量下产物的振动分配.结果表明,在过渡态后,耦合常数(BK,F)的大小强烈地影响产物的振动态分布,另外用传统过渡态、变分过渡态理论及相关的隧道效应校正计算了该反应的速率常数.  相似文献   

6.
殷淑霞  王艳  冯文林 《化学学报》1999,57(6):590-595
对CH~4+H=CH~3+H~2的非绝热trapping型的动力学进行了研究。采用量子化学从头算方法在QCISD/6-311G^*^*水平上计算了该反应的内禀反应坐标(IRC)和IRC上各构型点的振动分析,利用各构型点的信息,计算得到了共线型模型反应和真实热反应沿反应坐标不同能量下的微正则反应通量。计算结果表明共线型反应具有非绝热trapping型的特征,而真实热反应则不是非绝热trapping型。采用统一统计理论计算了300K-1500K的共线型反应的速率常数,由微正则变分过渡态计算了热反应的速率常数,得到与实验一致的结果。  相似文献   

7.
在G3B3,CCSD(T)/6-311++G(d,p)//B3LYP/6-311++G(d,p)水平上详细研究了CH3SH与基态NO2的微观反应机理.在B3LYP/6-311++G(d,p)水平得到了反应势能面上所有反应物、过渡态和产物的优化构型,通过振动频率分析和内禀反应坐标(IRC)跟踪验证了过渡态与反应物和产物的连接关系.在CCSD(T)/6-311++G(d,p)和G3B3水平计算了各物种的能量,得到了反应势能面.利用经典过渡态理论(TST)与变分过渡态理论(CVT)并结合小曲率隧道效应模型(SCT),分别计算了在200~3000K温度范围内的速率常数kTST,kCVT和kCVT/SCT.研究结果表明,该反应体系共存在5个反应通道,其中N进攻巯基上H原子生成CH3S+HNO2的通道活化势垒较低,为主要反应通道.动力学数据也表明,该通道在200~3000K计算温度范围内占绝对优势,拟合得到的速率常数表达式为k1CVT/SCT=1.93×10-16T0.21exp(-558.2/T)cm3·molecule-1·s-1.  相似文献   

8.
用量子化学从头计算方法研究了2-羟基-1-氧基乙烯自由基的质子转移反应。首先, 在UHF/3-21G的水平上, 采用能量梯度法优化了反应物和过渡态的几何构型, 然后利用这两个优化的构型做了振动分析, 找出相应的振动频率和模式, 从而得到质子转移反应的活化熵值。此外, 又做了内禀反应坐标途径(IRC)。为了求得比较准确的反应势能剖面, 以便进行隧道效应校正, 用多体微扰法(二级微扰)同时在参加转移的氢原子上附加了扩散函数p(UMP_2/3-21G~+)在IRC的各点上进行能量校正。根据从以上计算结果拟合的抛物线势, 求出质子转移的隧道效应校正系数为19.9, 然后由过渡状态理论计算了此反应的比速常数为7.4×10~(11)s~(-1)。此外, 还得到了该自由基的分子内氢键键能和键长分别为19.2 kJ mol~(-1)和0.2057 nm(UMP_2/3-21G~+结果)。  相似文献   

9.
HNCO+OH→H2O+NCO的反应机理   总被引:2,自引:1,他引:1  
采用从头算分子轨道法(UHF/6-31G**水平,并用MP4加以相关能校正)研究了HNCO+OH→H2O+NCO反应机理.同时用Morokuma数值法获得了反应途径即内禀反应坐标(IRC).沿着IRC,运用反应途径哈密顿理论,获得反应途径动态学信息.在此基础上,根据过渡态理论和相应隧道效应校正,计算了在不同温度下的反应速率常数,得到了和实验相一致的结果.计算结果表明,此反应是一步直接型的抽提H反应.  相似文献   

10.
CH3S←→CH2SH异化反应的理论研究   总被引:1,自引:0,他引:1  
利用密度泛函理论(DFT)和从头算(ab initio)研究了CH3SCH2SH互异化的反应机理.采用HF、 B3LYP、 MP2理论水平和中等基组6-31(d),计算了CH3S、 CH2SH及其过渡态的结构参数、谐振频率、零点能(ZPE)、总能量和相对能量,并利用B3LYP/6-31(d)的方法计算了反应的内禀反应坐标(IRC),给出了分子构型和自旋污染沿反应坐标的变化曲线,以及最小能量曲线(MEP)、绝热能量曲线.此外,利用传统过渡态理论(CTST)研究了该互异化反应的速率常数和平衡常数在200~1000 K的变化.  相似文献   

11.
乙炔与氢原子反应:H+H—C≡C—H→ H—C≡C:+H_2在碳氢化合物的氧化、光解和热解中都具有重要意义。Dagaut等人做过动力学研究,但从理论角度研究其反应动力学尚未见报道。本文用量化方法在反应途径哈密顿基础上,求得了反应途径(IRC)上各点的IRC曲率(B_F)、IRC与其它各振动模式之间的耦合常数(B_(F,t))等,并计算出反应速度常数。 本文用HF/6-31G优化出了过渡态的几何构型(图1),并给出了过渡态的虚振动模式。  相似文献   

12.
采用CBS-QB3方法构建了丙烯酸甲酯(CH_2=CHCOOCH_3)与O_3反应体系的势能剖面并在此基础上利用经典过渡态理论(TST)和Wigner矫正模型计算了标题反应在200K~1200K温度区间内的速率常数kTST/W.研究结果表明,CH_2=CHCOOCH)3与O)3反应首先经过渡态生成一个稳定的五元环中间体,然后按断键位置不同,分别生成产物P1(CH_3OCOCHO+CH_2O_2)和P2(CH)3OCOCHOO+HCHO).此外,速率常数结果显示,在计算温度范围内,标题反应速率常数呈正温度系数效应.294K时,CH_2=CHCOOCH_3与O_3反应速率常数为1.76×10-18cm~3·molecule~(-1)·s~(-1),与所测实验值(0.95±0.07)×10~(-18)cm~3·molecule~(-1)·s~(-1)非常接近.  相似文献   

13.
用密度函数理论B3LYP方法和6-31G(d,p),6-311G(d,p)及6-311+G(d,p)基组,分别对1-C4H^+~8,2-C4H^+~8和C4H^+~10进行了构型优化和频率分析计算,预言1-C4H^+~8具有非平面构型,与以往报道的从头算和密度函数理论计算结果不同。在各自由基阳离子的B3LYP构型上,进行了B3LYP、MP2及MRSDCI方法的超精细偶合常数计算,得到了比以往更好的结果,特别是MP2/B3LYP计算值是至今与实验值符合得最好的理论计算结果。  相似文献   

14.
李宗和  吴立明  刘若庄 《化学学报》1997,55(11):1061-1065
本文用从头计算法(UMP2/6-31G)对氟与二氟乙烷的与1位、2位碳相连的氢的抽提氢反应进行研究。CHF2CH3+F→CF2CH3+HF(R1), CHF2CH3+F→CHF2CH2+HF(R2)。在内禀反应坐标(IRC)的势能剖面基础上用传统过渡态、变分过渡态理论计算了上述两个反应的速率常数及比值, 获得了与实验相一致的结果。  相似文献   

15.
对H+SiH2Cl2反应进行了详细的理论研究,理论证明了抽提氢的通道是唯一可行的反应通道。并在从头算给出的电子结构信息基础上,用变分过渡态理论(CVT)加小曲率隧道效应校正(SCT)等方法对该反应进行了直接的动力学研究,得到该反应的理论速率常数,并详细讨论了各动力学参数沿反应坐标的变化。在较宽的温度范围内,反应速率常数表现出非Arrhenius行为,用三参数公式似合了速-温关系式,为k(T)=(1.32×10^-22)T^3.67exp(-26/T)。理论计算的速率常数与实验数值符合得很好。  相似文献   

16.
用量子化学B3LYP/6 - 311+G(d,p)方法优化了H2ClCS单分子分解反应驻点物种的几何构型,并在相同水平上通过频率计算和内禀反应坐标(IRC)分析对过渡态结构及连接性进行了验证.用QCISD(T)/6-311++G(d,p)方法计算各物种的单点能,并对总能量进行了零点能校正.利用经典过渡态理论(TST)与...  相似文献   

17.
在G3B3, CCSD(T)/6-311++G(d,p)//B3LYP/6-311++G(d,p)水平上详细研究了CH3SH与基态NO2的微观反应机理. 在B3LYP/6-311++G(d,p)水平得到了反应势能面上所有反应物、过渡态和产物的优化构型, 通过振动频率分析和内禀反应坐标(IRC)跟踪验证了过渡态与反应物和产物的连接关系. 在CCSD(T)/6-311++G(d,p)和G3B3水平计算了各物种的能量, 得到了反应势能面. 利用经典过渡态理论(TST)与变分过渡态理论(CVT)并结合小曲率隧道效应模型(SCT), 分别计算了在200~3000 K温度范围内的速率常数kTST, kCVT和kCVT/SCT. 研究结果表明, 该反应体系共存在5个反应通道, 其中N进攻巯基上H原子生成CH3S+HNO2的通道活化势垒较低, 为主要反应通道. 动力学数据也表明, 该通道在200~3000 K计算温度范围内占绝对优势, 拟合得到的速率常数表达式为k1CVT/SCT=1.93×10-16T0.21exp(-558.2/T) cm3&;#8226;molecule-1&;#8226;s-1.  相似文献   

18.
HNCO+OH->H2O+NCO的反应机理   总被引:3,自引:0,他引:3  
采用从头算分子轨道法 (UHF/6 31G 水平 ,并用MP4加以相关能校正 )研究了HNCO OHH2 O NCO反应机理 .同时用Morokuma数值法获得了反应途径即内禀反应坐标 (IRC) .沿着IRC ,运用反应途径哈密顿理论 ,获得反应途径动态学信息 .在此基础上 ,根据过渡态理论和相应隧道效应校正 ,计算了在不同温度下的反应速率常数 ,得到了和实验相一致的结果 .计算结果表明 ,此反应是一步直接型的抽提H反应 .  相似文献   

19.
胡海泉  刘成卜 《化学学报》1998,56(12):1180-1183
用量子化学理论方法研究了硅杂环丙烯单重态的异构化反应。结果表明:该异构化反应的过渡态为三元环结构,该反应为氢迁移反应;反应的势垒高度为276.67kJ·mol^-^1[MP2/6-31G(d)]。通过内禀反应坐标(IRC)计算,获得了沿反应途径的势能剖面。  相似文献   

20.
CH3(2A′)自由基与臭氧反应机理的量子化学研究   总被引:2,自引:0,他引:2  
用量子化学UMP2方法,在6-311++G**基组水平上研究了CH3(2A′)自由基与臭氧反应机理,全参数优化了反应过程中反应物、中间体、过渡态和产物的几何构型,在UQCISD(T)/6-311++G**水平上计算了它们的能量;并对它们进行了振动分析,以确定中间体和过渡态的真实性;同时应用经典过渡态理论计算了反应的速率常数,并与实验值进行了比较, CH3自由基与臭氧反应速率常数的理论计算结果为: 4.73×10-14 cm3•molecule-1•s-1,与实验报导的结果(k=2.52×10-14 cm3•molecule-1•s-1)很接近,同时发现CH3(2A′)自由基与O3的反应是强放热反应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号