首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
We explore the concept of apparent transmissivity for bounded randomly heterogeneous media under steady-state flow regime. The novelty of our study consists of investigating a tensorial nature of apparent transmissivity. We demonstrate that apparent transmissivity of bounded domains is anisotropic even though an underlying local transmissivity field is statistically isotropic. For rectangular flow domains, we derive an analytical expression for the apparent transmissivity tensor via localization and perturbation expansion of the nonlocal mean flow equations in the variance of log-transmissivity. In this expression, almost everywhere the off-diagonal terms are several orders of magnitude smaller than the diagonal terms. When the domain size relative to the log-transmissivity correlation scale is large, the longitudinal and transverse components of the apparent transmissivity tensor approach the geometric mean of local transmissivity. While rigorously valid for mean uniform flows only, our expression for the apparent transmissivity tensor leads to mean hydraulic head distributions that compare favorably with those obtained through Monte-Carlo simulations and the nonlocal mean flow equations even in the presence of pumping wells. This agreement deteriorates in the vicinity of wells and as pumping rates increase.  相似文献   

2.
A method is shown that enables closed-form solutions to be calculated for steady flow in leaky multi-layer aquifer systems. The method requires, as a prerequisite, the numerical solution of a generalized eigenvalue problem. This eigenvalue problem always has real positive eigenvalues, and the eigenvectors are always orthogonal relative to the transmissivity matrix. Partial solutions are given for a number of examples, and a numerical example is used to show how a solution can be obtained for flow to a well when the well abstracts water from more than one aquifer.List of notation A area - , specified vector functions - piezometric head vector - h i piezometric head in aquifer i - I 0, I 1 modified Bessel functions of the first kind - K 0 , K 1 modified Bessel functions of the second kind - l half width of an irrigated strip - vertical flux velocity vector - P i vertical flux velocity in aquifer i - well flow rate vector - Q i well flow rate in aquifer i - R leakance matrix - R i leakance of aquitard i - R radius of an irrigated area - r distance between two points - r 0 well screen radius - T transmissivity matrix - tti transmissivity of acquifer i - n eigenvector - Euler's constant - n eigenvalue - v arc length normal to a boundary  相似文献   

3.
A compartmental model is developed to estimate flow parameters of a shallow aquifer affected by water loads in surface reservoirs and to evaluate its nonsteady flow distribution. The method incorporates temporal piezometric head measurements and sampling of water for dissolved chemicals and isotopes analyses. Each compartment is governed by a set of equations describing the conservation of linear momentum and mass balance expressions for water, isotopes, and dissolved chemicals. The number of compartmental balance expressions always must be greater than that of the unknown flow parameters associated with each compartment. An optimization method is described to yield spatial distribution of aquifer storativity, transmissivity, porosity, leakage, and compliance coefficients and fluxes leaking into an aquifer's lower boundary. Future predictions of an aquifer's piezometric head distribution in a compartmental system is formulated on the basis of the estimated flow parameters and the leakage components.Compartmental modelling which incorporates concentrations of environmental tracers, may yield efficiency in computing resources and accuracy enhancement for predicting an aquifer's flow regime.  相似文献   

4.
We consider a general model of transient flow in media of random conductivity and storativity. The flow is driven by the spatially distributed source function (x, t) and the initial head distribution h 0(x). The function models sources and wells and can be deterministic, random or a sum of both. The deterministic source function corresponds to singularities of deterministic strength, whereas the random models the head boundary condition. In the latter case, is shown to be proportional to the hydraulic conductivity. The aim of the study is to analyze the feasibility of averaging the flow equations and of developing the mathematical model of average flow (AFM) without solving problems in detail. It is shown that the problem of averaging is reduced to deriving two constitutive equations. The first equation, the effective Darcy's law (EDL) stems from averaging Darcy's law at local scale. The second one is related to the medium ability to store a fluid and expresses the correlation between the storativity and head in terms of the mean head. Both relationships are required to be completely determined by the medium structure (conductivity and storativity statistical properties) and independent of the flow configuration (functions and h 0). We show that if one of the constitutive equations exists, the same is true respective to the second. This reduces the problem of averaging to the classic one of deriving the EDL. For steady flows the EDL is shown to exist for flows driven by sources (wells) of either deterministic flux or head boundary conditions. No EDL can be derived if both types of sources are present in the flow domain. For unsteady flows the EDL does not exist if the initial head correlates with the medium properties. For uncorrelated initial head distribution, its random residual (due to the measurement errors and scarcity of the data) has no impact on the EDL and is immaterial. For deterministic h 0, the only case for which the EDL exists is the flow by sources of deterministic discharge. For sources of given head boundary condition the EDL can be derived only for uniform initial head distribution. For all other cases, the EDL does not exist. The results of the study are not limited by usually adopted assumptions of weak heterogeneity and of stationarity of the formation random properties.  相似文献   

5.
The aim of this paper is to analyze the statistical properties of solute concentration in natural aquifers as sampled in observation wells, having a small diameter in comparison with the characteristic size of the heterogeneity in hydraulic properties. The analysis, in Langragian framework, takes advantage of the reverse formulation, where, instead of considering the destination of the injected particles, the origin of the particle being sampled is sought. In the case of small values of the log-conductivity variance Y2, it allows the derivation of an analytical expression for concentration mean, variance and pdf, while for aquifer characterized by high value in Y2, a numerical analysis based on a Monte Carlo approach using a reverse scheme is developed and applied for values of Y2 up to 2. In this case, the use of a Beta function to fit the concentration pdf proves valid for practical applications. The comparison between the numerical and the analytical results defines the range of validity of the analytical ones. The relative role of large-scale dispersion processes and pore-scale effects is analyzed in terms of global variance in order to point out limits and accuracy of the Eulerian scheme in comparison with the Lagrangian one.  相似文献   

6.
In this study, we examine the classical problem of unsteady flow in a phreatic aquifer, induced by continuous rise of the water flux and head on its boundary. A closed-form analytical solution for the governing Boussinesq equation is derived for a semi-infinite aquifer.  相似文献   

7.
The unsteady flow of water to well in a layered aquifer with an interlayer flow is examined in this paper. The system studied comprises an aquifer consisting of two productive layers of finite thickness that are in a perfect hydraulic contact and a well which partially penetrates in one of the layers. Each layer is assumed to be homogeneous and isotropic and the water contained in the aquifer is of identical physical properties and small compressibility.The analytical solutions are derived for the case when the system is characterised by equality of hydraulic diffusivity of layers. These solutions give the results accurate enough for practical applications and allow to estimate the effects of partial penetration and contrast in parameters of formation on distribution of the flow potential both at large distances from wells and at the wells.The obtained solutions also provide a basis for predicting the interlayer flow arising from the performance of a pumping well as well as between a pair of wells which have an open interval located in different layers of the aquifer. Two cases have been analysed: (1) a pumping pair of wells which is used to prevent water inflow to the productive well, and (2) a pumping-injection pair of wells providing the demanded mixing of water from adjacent layers. Some examples of flow patterns and specially computed diagrams are given to illustrate the operation of such systems.  相似文献   

8.
A fully developed laminar Poiseuille flow subject to constant heat flux across the wall is analysed with respect to its stability behavior by applying a weakly nonlinear stability theory. It is based on an expansion of the disturbance control equations with respect to a perturbation parameter ε. This parameter is the small initial amplitude of the fundamental wave. This fundamental wave which is the solution of the linear (Orr-Sommerfeld) first order equation triggers all higher order effects with respect to ε. Heat transfer is accounted for asymptotically through an expansion with respect to a small heat transfer parameter ε T . Both perturbation parameters, ε and ε T , are linked by the assumption ε T =O2) by which a certain distinguished limit is assumed. The results for a fluid with temperature dependent viscosity show that heat transfer effects in the nonlinear range continue to act in the same way as in the initial linear range. Received on 11 August 1997  相似文献   

9.
A new inverse method is developed to simultaneously estimate heterogeneous hydraulic conductivities, source/sink rates, and unknown boundary conditions for steady-state flow in an unconfined aquifer. Unlike objective function-based techniques, the new method does not optimize any data-model misfits. Instead, its formulation is developed by honoring physical flow principles as well as observation data at sampled locations. Under the Dupuit–Forchheimer assumption of negligible vertical flow, accuracy and stability of the new method are demonstrated using synthetic heterogeneous aquifer problems with increasingly complex flow: (1) aquifer domains without source/sink effects; (2) aquifer domains with a point sink (a pumping well operating under a constant discharge rate); (3) aquifer domains with constant or spatially variable recharge; (4) aquifer domains with constant or spatially variable recharge undergoing single-well pumping. For all problems, inversion yields stable solutions under increasing head measurement errors (up to $\pm $ 10 % of the total head variation in a problem), although accuracy of the estimated parameters degrades with the increasing errors. The inverse method is successfully tested on problems with high hydraulic conductivity contrasts—up to 10,000 times between the maximum and minimum values. In inverting several heterogeneous problems, if the aquifer is assumed homogeneous with a constant recharge rate, physically meaningful parameter estimates (i.e., equivalent conductivities and mean recharge rates) can be determined. Alternatively, if the inverse parameterization contains spurious parameters, inversion can identify such parameters, while the simultaneous estimation of non-spurious parameters is not affected. The method obviates the well-known issues associated with model “structure errors”, when inverse parameterization either simplifies or complexifies the true parameter field.  相似文献   

10.
A unified algorithm is presented for the refinement of finite element meshes consisting of tensor product Lagrange elements in any number of space dimensions. The method leads to repeatedly refined n-irregular grids with associated constraint equations. Through an object-oriented implementation existing solvers can be extended to handle mesh refinements without modifying the implementation of the finite element equations. Various versions of the refinement procedure are investigated in a porous media flow problem involving singularities around wells. A domain decomposition-type finite element method is also proposed based on the refinement technique. This method is applied to flow in heterogeneous porous media. © 1998 John Wiley & Sons, Ltd.  相似文献   

11.
Upward displacement of brine from deep reservoirs driven by pressure increases resulting from CO2 injection for geologic carbon sequestration may occur through improperly sealed abandoned wells, through permeable faults, or through permeable channels between pinch-outs of shale formations. The concern about upward brine flow is that, upon intrusion into aquifers containing groundwater resources, the brine may degrade groundwater. Because both salinity and temperature increase with depth in sedimentary basins, upward displacement of brine involves lifting fluid that is saline but also warm into shallower regions that contain fresher, cooler water. We have carried out dynamic simulations using TOUGH2/EOS7 of upward displacement of warm, salty water into cooler, fresher aquifers in a highly idealized two-dimensional model consisting of a vertical conduit (representing a well or permeable fault) connecting a deep and a shallow reservoir. Our simulations show that for small pressure increases and/or high-salinity-gradient cases, brine is pushed up the conduit to a new static steady-state equilibrium. On the other hand, if the pressure rise is large enough that brine is pushed up the conduit and into the overlying upper aquifer, flow may be sustained if the dense brine is allowed to spread laterally. In this scenario, dense brine only contacts the lower-most region of the upper aquifer. In a hypothetical case in which strong cooling of the dense brine occurs in the upper reservoir, the brine becomes sufficiently dense that it flows back down into the deeper reservoir from where it came. The brine then heats again in the lower aquifer and moves back up the conduit to repeat the cycle. Parameter studies delineate steady-state (static) and oscillatory solutions and reveal the character and period of oscillatory solutions. Such oscillatory solutions are mostly a curiosity rather than an expected natural phenomenon because in nature the geothermal gradient prevents the cooling in the upper aquifer that occurs in the model. The expected effect of upward brine displacement is either establishment of a new hydrostatic equilibrium or sustained upward flux into the bottom-most region of the upper aquifer.  相似文献   

12.
Geological sequestration of CO2 offers a promising solution for reducing net emissions of greenhouse gases into the atmosphere. This emerging technology must make it possible to inject CO2 into deep saline aquifers or oil- and gas-depleted reservoirs in the supercritical state (P > 7.4MPa and T > 31.1°C) to achieve a higher density and therefore occupy less volume underground. Previous experimental and numerical simulations have demonstrated that massive CO2 injection in saline reservoirs causes a major disequilibrium of the physical and geochemical characteristics of the host aquifer. The near-well injection zone seems to constitute an underground hydrogeological system particularly impacted by supercritical CO2 injection and the most sensitive area, where chemical phenomena (e.g. mineral dissolution/precipitation) can have a major impact on the porosity and permeability. Furthermore, these phenomena are highly sensitive to temperature. This study, based on numerical multi-phase simulations, investigates thermal effects during CO2 injection into a deep carbonate formation. Different thermal processes and their influence on the chemical and mineral reactivity of the saline reservoir are discussed. This study underlines both the minor effects of intrinsic thermal and thermodynamic processes on mineral reactivity in carbonate aquifers, and the influence of anthropic thermal processes (e.g. injection temperature) on the carbonates’ behaviour.  相似文献   

13.
Tidal Effects on Groundwater Motions   总被引:1,自引:0,他引:1  
Assuming a sharp interface between freshwater and seawater within a coastal aquifer, a theory is developed to account for the piezometric head movement of steady and unsteady components in terms of large- and small-time scales. Tidal fluctuations are simulated by a series of decomposed simple harmonic motions in time. Groundwater fluctuation induced by tidal motion is perturbed to the groundwater head of large-time scale. Ghyben–Herzberg formulation is applied for solutions of large-time scale and a unified formulation for various flows of small-time scale is derived (Strack, 1989). Approximate analytical solutions for amplitudes and phase lags of tidal groundwater motions and the freshwater–seawater interface for a coastal aquifer in a circular island are obtained. The induced fluctuation amplitude generally decays in distance with a parameter consisting of hydraulic conductivity, storage coefficient, thickness of aquifer and tidal period. The present approach can be applied to confined and unconfined aquifers, with only freshwater flows or interfacial flows. The theory is verified with some experimental results (Parlange, et al., 1984; Nielson, 1990). It can also used to determine physical parameters of an aquifer by monitoring the groundwater fluctuations due to tidal motions (Carr and van der Kamp, 1969).  相似文献   

14.
In this paper, we consider viscoelastic stresses T11, T12 and T22 arising in the stagnation flow of a dilute polymer solution; in particular, we consider an upper convected Maxwell (UCM) fluid. We present exact solutions to the coupled partial differential equations describing the viscoelastic stresses and deduce the results for the stress T22 of Becherer et al. [P. Becherer, A.N. Morozov, W. van Saarloos, Scaling of singular structures in extensional flow of dilute polymer solutions, J. Non-Newtonian Fluid Mech. 153 (2008) 183–190]. As we considered the viscoelastic stresses over two spatial variables, we are able to study the effect of variable boundary data at the inflow. As such, our results are applicable to a wider range of fluid flow problems.  相似文献   

15.
A three-dimensional model of transport in porous media, consisting of several aquifers and aquitards, is presented. In the solution procedure a two-dimensional flow model has been adapted to incorporate three-dimensional velocity components. This procedure enables to observe the way particles of a pollutant are being transported through the system of aquifers and aquitards, while maintaining the Dupuit assumption of zero vertical gradients of the hydraulic head in the aquifers. The governing equations are solved using a finite element technique. The transport of pollutants is restricted to advective transport and linear adsorption.  相似文献   

16.
Horizontal groundwater flows in unconfined aquifers with horizontal lower boundaries can be found exactly by the seepage analysis that allows the hydraulic conductivity to vary in the vertical direction. The exact analysis of flows when the lower boundary of the aquifer is not a horizontal plane, requires the soil-water pressure on this boundary to be known, and this is not generally the case except in the situation of a freshwater aquifer overlying saline water fed from the sea. For aquifers with spatial variations of hydraulic conductivity in both the vertical and horizontal directions, the seepage analysis can be modified to give groundwater flows in situations where the hydraulic conductivity can be represented by the product of independent functions of the three spatial coordinates. Different forms of three-dimensional variation are generated from suitably chosen functions. The use of such forms in calculations of equivalent uniform hydraulic conductivities of some groundwater flow regions demonstrates the dependence of equivalent hydraulic conductivity values on the flow boundary conditions. The exact groundwater flows calculated for particular groundwater situations by the seepage analysis provide results that are useful in validating numerical methods for solving groundwater problems in heterogeneous soils.  相似文献   

17.
The Pleistocene aquifers are important sources of water supply in both the Gaza and Jericho areas of Palestine. The aquifers are saline with freshwater lenses floating on saline bodies of water. It is important to investigate how to exploit these freshwater lenses without causing unnecessary mixing of the fresh and saline waters. The objective of this research is to investigate the feasibility of applying skimming and scavenger pumping as a means to exploit the freshwater lenses and to control saline water upconing in the aquifers. This study is the first to examine the movement of fresh and saline waters underneath skimming and scavenger wells in the aquifers of Gaza and Jericho. Two simulation models that couple density-dependent fluid flow and solute transport have been used to simulate and predict the movement of saltwater under different hydrogeological and operational conditions of skimming and scavenger wells in the two aquifers. The results show (for the Jericho Aquifer) that: the location of well screen has a strong control on the steady-state position of the fresh/saline water transition zone; the upconing mechanism appears to continue under skimming pumping until saline water enters the well screen even when the pumping rate is reduced; and for better salinity control it is necessary to place well screen against the gravel layers only and locate one screen segment in the saline water zone. The study shows (for the Gaza coastal aquifer) that the most important parameters affecting the movement of saline water under scavenger pumping are the relationship between recharge and pumping rates, the location of the well screen within the saturated thickness, the vertical permeability; and the transverse dispersivity. This study shows that saltwater upconing in Gaza aquifer can be controlled by operating a second well in the saline water zone so that the optimal ratio between saline water and freshwater pumping is 1:2 respectively.  相似文献   

18.
Electrical double-layer effects are unimportant in flows through porous media except when the Debye length k?1 is comparable in magnitude with the pore radius a. Under these conditions the equations governing the flow of electrolyte are those of Stokes, Nernst-Planck and Poisson. These equations are non-linear and require numerical solution. The finite element method provides a useful basis for solution and various algorithms are investigated. The numerical stability and errors of each scheme are analysed together with the development of an appropriate finite element mesh. The electro-osmotic flow of a typical electrolyte (barium chloride) through a uniformly charged cylindrical membrane pore is investigated and the ion fluxes are post-computed from the numerical solutions. The ion flux is shown to be strongly dependent on both zeta potential and pore radius, ka, indicating the effects of overlapping electrical double layers.  相似文献   

19.
The stochastic approach has been shown to be an excellent tool for the characterisation and analysis of velocity fields and transport processes through heterogeneous porous formations. The main results (linear theory) have been obtained for problems with simplified flow conditions, usually in the assumption of uniform in the average flow, but a great effort is spent to reach theoretical results for more complex situations.This paper deals with 2D heterogeneous aquifers subject to uniform recharge; the stochastic approach is adopted to characterise, as ensemble behaviour, the velocity field and transport processes of a nonreactive solute. The impact of transmissivity conditioning on solute particles trajectories is analysed and an application is carried out. The analytical formulations, obtained by a first order analysis, are compared to the one resulting from constant in the average hydraulic gradient, and their reliability is investigated with numerical tests performed by a Monte Carlo method.The result of this study is that strong non-stationarities are present in the flow and transport process. A detailed analysis shows that the theoretical results cannot be extended to cases with high heterogeneity level, unlike the uniform in the average flow fields.  相似文献   

20.
H. Olivier 《Shock Waves》1995,5(4):205-216
In a number of experimental and numerical publications a deviation has been found between the measured or computed stagnation point heat flux and that given by the theory of Fay and Riddell. Since the formula of Fay and Riddell is used in many applications to yield a reference heat flux for experiments performed in wind tunnels, for flight testing and numerical simulations, it is important that this reference heat flux is as accurate as possible. There are some shortcomings in experiments and numerical simulations which are responsible in some part for the deviations observed. But, as will be shown in the present paper, there is also a shortcoming on the theoretical side which plays a major role in the deviation between the theoretical and experimental/numerical stagnation point heat fluxes. This is caused by the method used so far to determine the tangential velocity gradient at the stagnation point. This value is important for the stagnation point heat flux, which so far has been determined by a simple Newtonian flow model. In the present paper a new expression for the tangential velocity gradient is derived, which is based on a more realistic flow model. An integral method is used to solve the conservation equations and, for the stagnation point, yields an explicit solution of the tangential velocity gradient. The solution achieved is also valid for high temperature flows with real gas effects. A comparison of numerical and experimental results shows good agreement with the stagnation point heat flux according to the theory of Fay and Riddell, if the tangential velocity gradient is determined by the new theory presented in this paper.This article was processed by the author using theLATEX style filepljour2 from Springer-Verlag.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号