首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Numerical simulation of the steady and laminar convection in the thermal entry region of the finned annulus is carried out for the case of hydrodynamically fully developed flow when subjected to uniform heat flux thermal boundary condition. Finite difference based marching procedure is used to compute the numerical solution of the energy equation. The results to be presented include Nusselt number, as a function of dimensionless axial length and thermal entrance length for various configurations of the finned double-pipe. The numerical results show that Nusselt number has complex dependence on the geometric variables like ratio of radii, fin height, and number of fins. A comparison of the computed results for certain limiting cases with the results available in the literature validates the numerical procedure used in this work.  相似文献   

2.
The heat transfer in the region of circular pipes close to the beginning of the heating section is investigated for low-Péclet-number flows with fully developed laminar velocity profile. Axial heat conduction is included and its effect on the temperature distribution is studied not only for the region downstream of the start of heating but also for that upstream. The energy equation is solved numerically by a finite difference method. Results are presented graphically for various Péclet numbers between 1 and 50. The boundary conditions are uniform wall temperature and uniform wall heat flux with step change at a certain cross-section. For the latter case, also some results for the region near the end of the heating section are reported. The solutions are applicable for the corresponding mass transfer situations where axial diffusion is important if the temperature is replaced by the concentration andPe byReSc.  相似文献   

3.
4.
5.
Convective heat transfer properties of a hydrodynamically fully developed flow, thermally developing flow in a parallel-flow, and noncircular duct heat exchanger passage subject to an insulated boundary condition are analyzed. In fact, due to the complexity of the geometry, this paper investigates in detail heat transfer in a parallel-flow heat exchanger of equilateral-triangular and semicircular ducts. The developing temperature field in each passage in these geometries is obtained seminumerically from solving the energy equation employing the method of lines (MOL). According to this method, the energy equation is reformulated by a system of a first-order differential equation controlling the temperature along each line.Temperature distribution in the thermal entrance region is obtained utilizing sixteen lines or less, in the cross-stream direction of the duct. The grid pattern chosen provides drastic savings in computing time. The representative curves illustrating the isotherms, the variation of the bulk temperature for each passage, and the total Nusselt number with pertinent parameters in the entire thermal entry region are plotted. It is found that the log mean temperature difference (T LM), the heat exchanger effectiveness, and the number of transfer units (NTU) are 0.247, 0.490, and 1.985 for semicircular ducts, and 0.346, 0.466, and 1.345 for equilateral-triangular ducts.
Konvektiver Wärmeübergang im thermischen Einlaufgebiet von Gleichstromwärmetauschern mit nichtkreisförmigen Strömungskanälen
Zusammenfassung Die Untersuchung bezieht sich auf das konvektive Wärmeübertragungsverhalten eines Gleichstromwärmetauschers mit nichtkreisförmigen Strömungskanälen bei hydraulisch ausgebildetet, thermisch einlaufender Strömung unter Aufprägung einer adiabaten Randbedingung. Zwei Fälle komplizierter Geometrie, nämlich Kanäle mit gleichseitig dreieckigen und halbkreisförmigen Querschnitten, werden bezüglich des Wärmeübergangsverhaltens bei Gleichstromführung eingehend analysiert. Das sich entwickelnde Temperaturfeld in jedem Kanal von der eben spezifizierten Querschnittsform wird halbnumerisch durch Lösung der Energiegleichung unter Einsatz der Linienmethode (MOL) erhalten. Dieser Methode entsprechend erfolgt eine Umformung der Energiegleichung in ein System von Differentialgleichungen erster Ordnung, welches die Temperaturverteilung auf jeder Linie bestimmt.Die Temperaturverteilung im Einlaufgebiet wird unter Vorgabe von 16 oder weniger Linien über dem Kanalquerschnitt erhalten, wobei die gewählte Gitteranordnung drastische Einsparung an Rechenzeit ergibt. Repräsentative Kurven für das Isothermalfeld, den Verlauf der Mischtemperatur für jeden Kanal und die Gesamt-Nusseltzahl als Funktion relevanter Parameter im gesamten Einlaufgebiet sind in Diagrammform dargestellt. Es zeigt sich, daß die mittlere logarithmische Temperaturdifferenz (T LM), der Wärmetauscherwirkungsgrad und die Anzahl der Übertragungseinheiten (NTU) folgende Werte annehmen: 0,247, 0,490 und 1,985 für halbkreisförmige Kanäle sowie 0,346, 0,466 und 1,345 für gleichseitig dreieckige Kanäle.

Nomenclature A cross sectional area [m2] - a characteristic length [m] - C c specific heat of cold fluid [J kg–1 K–1] - C h specific heat of hot fluid [J kg–1 K–1] - C p specific heat [J kg–1 K–1] - C r specific heat ratio,C r=C c/Ch - D h hydraulic diameter of duct [m] - f friction factor - k thermal conductivity of fluid [Wm–1 K–1] - L length of duct [m] - m mass flow rate of fluid [kg s–1] - N factor defined by Eq. (20) - NTU number of transfer units - Nu x, T local Nusselt number, Eq. (19) - P perimeter [m] - p pressure [KN m–2] - Pe Peclet number,RePr - Pr Prandtl number,/ - Q T total heat transfer [W], Eq. (13) - Q ideal heat transfer [W], Eq. (14) - Re Reynolds number,D h/ - T temperature [K] - T b bulk temperature [K] - T e entrance temperature [K] - T w circumferential duct wall temperature [K] - u, U dimensional and dimensionless velocity of fluid,U=u/u - , dimensional and dimensionless mean velocity of fluid - w generalized dependent variable - X dimensionless axial coordinates,X=D h 2 /a 2 x* - x, x* dimensional and dimensionless axial coordinate,x*=x/D hPe - y, Y dimensional and dimensionless transversal coordinates,Y=y/a - z, Z dimensional and dimensionless transversal coordinates,Z=z/a Greek symbols thermal diffusivity of fluid [m2 s–1] - * right triangular angle, Fig. 2 - independent variable - T LM log mean temperature difference of heat exchanger - effectiveness of heat exchanger - generalized independent variable - dimensionless temperature - b dimensionless bulk temperature - dynamic viscosity of fluid [kg m–1 s–1] - kinematic viscosity of fluid [m2 s–1] - density of fluid [kg m–3] - heat transfer efficiency, Eq. (14) - generalized dependent variable  相似文献   

6.
Attention is directed toward the problem of unsteady convective heat transfer to a fluid flowing inside a pipe in a laminar, fully developed fashion when suddenly, an ambient fluid outside the pipe undergoes a step change in temperature. For the fastest portion of the resultant transient, time domain I, an analytical solution of the governing partial differential thermal energy equation is effected via the Laplace transformation. From this solution, response functions are found for the pipe wall temperature, surface heat flux, and fluid bulk mean temperature as a function of non-dimensional time for a range of values of a parameter which characterizes the heat transfer between the ambient and the pipe.Comparison of results is made with a recent finite difference solution in the literature and with the standard quasi-steady type of analysis. It is found that the analytical solution presented herein extends and complements the finite difference solution and that the quasi-steady solution can be severely in error in this part of the transient.Nomenclature â c p R/wcpwb Ratio of thermal energy storage capacity of fluid to wall material - b pipe wall thickness - C n defined by equation (24) - c p , c pw specific heat capacity of fluid and pipe wall, respectively - D n functions defined by equation (23) - erf, erfc error function and complimentary error function, respectively - F t/R 2 Fourier number - g 1–2S - h local surface coefficient of heat transfer between inside of pipe wall and inside flowing fluid - i n erfc n th repeated integral of the error function - k thermal conductivity of the inside fluid - N h(2R)/k Nusselt number - p Laplace transform parameter - q w local, instantaneous surface heat flux at inside of pipe wall - Q w 2Rq w /k(T L –T i ) nondimensional surface heat flux - R pipe inside radius - S UR/k - t time - T local instantaneous fluid temperature - T B , T L , T i bulk mean, ambient, and initial, as well as inlet, temperature, respectively - u, u m local and mass average, fluid velocity, respectively - U overall heat transmission coefficient between ambient fluid outside of pipe and inside pipe wall - X, Y x/R, y/R nondimensional space coordinates along, and radially inward from, the pipe wall, respectively - k/c p thermal diffusivity of inside fluid - , w mass density of inside fluid and wall, respectively - (T(x, y, t)–T i )/(T L –T i ) - w , B wall, bulk mean value of , respectively  相似文献   

7.
The analytical solution to Graetz problem with uniform wall heat flux is extended by including the viscous dissipation effect in the analysis. The analytical solution obtained reduces to that of Siegel, Sparrow and Hallman neglecting viscous dissipation as a limiting case. The sample developing temperature profiles, wall and bulk temperature distributions and the local Nusselt number variations are presented to illustrate the viscous dissipation effects. It is found that the role of viscous dissipation on thermal entrance region heat transfer is completely different for heating and cooling at wall. In the case of cooling at wall, a critical value of Brinkman number, Br c=−11/24, exists beyond which (−11/24<Br<0) the fluid bulk temperature will always be less than the uniform entrance temperature indicating the predominance of cooling effect over the viscous heating effect. On the other hand, with Br < Br c the bulk temperature T b will approach the wall temperature T w at some downstream position and from there onward the bulk temperature T b becomes less than the wall temperature T w with T w > B b > T 0 indicating overall heating effect for the fluid. The numerical results for the case of cooling at wall Br < 0 are believed to be of some interest in the design of the proposed artctic oil pipeline.  相似文献   

8.
9.
10.
Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No, 5, pp. 19–24, September–October, 1989.  相似文献   

11.
This study investigates heat and moisture transfer between a sweating film and a nonwoven sheet both experimentally and numerically. A mathematical model based on heat conduction and moisture diffusion in both the air gap and cloth is presented. The evaporation rate and surface temperature of the sweating film are well predicted under various conditions such as air gap height, heating conditions, and sweating film orientation by evaluating the effective thermal conductivity and diffusion coefficient from the empirical equations of the Nusselt number for a fluid layer, even though the air gap height is sufficiently large to cause natural convections.  相似文献   

12.
Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 130–131, January–February, 1991.  相似文献   

13.
吴晓 《力学与实践》2016,38(6):679-684
建立了静不定梁在温度场中热弯曲的微分方程,推导出了在小挠度变形条件下静不定梁热弯曲的挠曲线表达式.研究结果表明:当温度沿梁高呈线性分布时,梁的温度使静不定梁受到轴向热力作用,梁底与梁顶的温度差使静不定梁发生热弯曲.在小挠度变形条件下:考虑轴向热力的作用时,静不定梁的热弯曲是非线性问题;忽略轴向热力的作用时,静不定梁的热弯曲是线性问题.Timoshenko的名著《材料力学》,在研究两端固支梁热弯曲问题时,得到了“两端固支梁热弯曲挠曲线表达式有时是意想不到的”结论,即两端固支梁热弯曲挠曲线表达式为零的结论.因此在考虑轴向热力对静不定梁热弯曲影响的基础上,研究了静不定梁热弯曲问题,把两端固支梁热弯曲问题与其他静不定梁热弯曲问题进行对比,对两端固支梁热弯曲挠曲线表达式为零的结论进行了理论解释,可知两端固支梁在热状态下的变形是一个弹性稳定问题.  相似文献   

14.
一个多孔有机织物热湿传递过程的数学模型   总被引:1,自引:0,他引:1  
利用多孔介质中的Darcy定律建立了一个多孔有机织物中热湿传递过程的数学模型,并提出了一个描述多孔有机织物中液相水重力与表面张力的对比关系的数H=5gρldcLτlεl1/3/2σcosФε1/3采用Crank—Nicolson方法数值求解了该模型,得到了在相同初始和边界条件下,不同有机材料织物中的热湿传递过程,并给出了多孔有机织物中的水蒸汽的浓度场分布、温度场分布以及纤维中的含水量的分布。计算结果与实验结果是吻合的。  相似文献   

15.
吴晓 《力学与实践》2016,38(6):679-684
建立了静不定梁在温度场中热弯曲的微分方程,推导出了在小挠度变形条件下静不定梁热弯曲的挠曲线表达式.研究结果表明:当温度沿梁高呈线性分布时,梁的温度使静不定梁受到轴向热力作用,梁底与梁顶的温度差使静不定梁发生热弯曲.在小挠度变形条件下:考虑轴向热力的作用时,静不定梁的热弯曲是非线性问题;忽略轴向热力的作用时,静不定梁的热弯曲是线性问题.Timoshenko的名著《材料力学》,在研究两端固支梁热弯曲问题时,得到了“两端固支梁热弯曲挠曲线表达式有时是意想不到的”结论,即两端固支梁热弯曲挠曲线表达式为零的结论.因此在考虑轴向热力对静不定梁热弯曲影响的基础上,研究了静不定梁热弯曲问题,把两端固支梁热弯曲问题与其他静不定梁热弯曲问题进行对比,对两端固支梁热弯曲挠曲线表达式为零的结论进行了理论解释,可知两端固支梁在热状态下的变形是一个弹性稳定问题.  相似文献   

16.
Investigations of two-phase heat transfer in the saturated flow-boiling region for multi-component mixtures has led to a proposed new correlation for the heat transfer coefficient where heat transfer of boiling is simply expressed in terms of the boiling number. This correlation was tested against the existing data on forced convective boiling heat transfer reported in the literature, giving satisfactory results; the correlation should, however, be tested further against wider data on convective heat transfer coefficients in multicomponent systems. The present lack of such data should be remedied.  相似文献   

17.
The dielectrophoretic effect can be used to produce a buoyancy force in a fluid, since the dielectric strength of the fluid is a function of temperature. This effect is in many aspects similar to the gravitational force and can be used to investigate thermal flows in complex force fields. The strength of this buoyancy force is experimentally measured. The experimental results show that side effects, like flows induced by charge injection or chain formation of fluid molecules, can be avoided. Theory and experiment are in good agreement. For future applications, this set-up is a reliable test experiment to check the suitability of available fluids.  相似文献   

18.
Summary An attempt has been made to interpret the thermal conductivity data of CO2 in the critical region by considering the gas to be a mixture of clusters. Additional heat transfer due to the formation and the breaking of clusters has also been considered.In contradiction to the recent experimental results, the calculated thermal conductivity values do not show a sharp maximum in the critical region. The reasons for this disagreement have been discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号