首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study borocarburizing was used for the formation of gradient boride layers. The microstructure, microhardness profiles and the low-cycle fatigue strength during radial compression of carburized, borided and borocarburized layer have been compared. The gradient borocarburized layers, formed by boriding of previously carburized substrate, are characterized by two zones in diffusion layer: iron borides zone and carburized zone. After borocarburizing the iron borides show a tendency towards a loss of the needle-like nature. The hardness gradient between iron borides and low-carbon substrate is reduced. The microhardness beneath the iron borides decreases to 900 HV in carburized zone and next gradually decreases to 400–450 HV in the core of steel. The highest resistance to low-cycle fatigue during radial compression has been observed in case of carburized and through hardened layer. The fatigue strength of gradient boride layer (borocarburized and through hardened) is a little lower. The typical borided and through hardened layer is characterized by the lowest resistance to low-cycle fatigue during radial compression. The profiles of stresses after boriding and borocarburizing have been compared. The obtained profile of stresses and the lower values of tensile stresses at the surface can be the reason for higher frictional wear resistance of borocarburized layers and for higher fatigue strength of these layers, too.  相似文献   

2.
The present work is an attempt to simulate the growth kinetics of the (FeB/Fe2B) bilayer grown on a substrate made of AISI 316 stainless steel by the application of the powder-pack boriding process, and using four different temperatures (1123, 1173, 1223 and 1273 K) and five exposure times (2, 4, 6, 8 and 10 h). The adopted diffusion model solves the mass balance equation at each growth front: (FeB/Fe2B or FeB/substrate) under certain assumptions and without considering the diffusion zone. To consider the effect of the incubation times for the borides formation, the temperature-dependent function ?(T) was incorporated in the model. To validate this model, a computer code written in Matlab (version 6.5), was developed with the purpose of simulating the kinetics of the boride layers. This computer code uses the following parameters as input data: (the boriding temperature, the treatment time, the upper and lower limits of boron concentration in each iron boride, the diffusion coefficients of boron in the FeB and Fe2B phases as well as the ?(T) parameter). The outputs of the computer code are the parabolic growth constant at each growth front and the thicknesses of the FeB and Fe2B layers. A good agreement was obtained between the experimental parabolic growth constants taken from a reference work [I. Campos-Silva et al., Formation and kinetics of FeB/Fe2B layers and diffusion zone at the surface of AISI 316 borided steels, Surf. Coat Technol., 205 (2010) 403-412] and the simulated values of the parabolic growth constants (kFeB and k1). The present model was also able to predict the thicknesses of the FeB and Fe2B layers at a temperature of 1243 K during 3 and 5 h.In addition, the mass gain at the material surface was also estimated as a function of the time and the upper boron content in each iron boride phase. It was shown that the simulated values of the generated mass gain are very sensitive to the increase of both temperature and the upper boron contents in the FeB and Fe2B phases.  相似文献   

3.
Two-step process: carburizing followed by boriding was applied to the formation of borocarburized layers. The boride layer formed on the substrate of changeable chemical and phase composition (e.g. borocarburized layer) was called “gradient boride layer”, in contrast to “typical boride layer”, formed on the substrate of constant chemical and phase composition. Until now, the typical heat treatment of borocarburized layer consisted of treatment through hardening: quenching in oil and low-temperature tempering. In this paper, instead of treatment through hardening, laser-heat treatment was employed. The properties of such layer were compared to the properties of typical carburized layer. Three zones characterized the microstructure of laser-modified borocarburized layer: iron borides (FeB+Fe2B) of modified morphology, hardened carburized zone (heat affected zone) and carburized layer without heat treatment. X-ray microanalysis indicated the increased boron concentration close to the surface due to the occurrence of a mixture of FeB and Fe2B borides. Near to the hardened carburized zone, Fe2B phase occurred in the laser-modified boride zone. Laser-heat treated borocarburized layer was characterized by higher microhardness at the surface than that obtained in case of carburized layer. It was caused by the iron borides (FeB+Fe2B) occurrence at the surface, as a consequence of boriding process. However, the carburized layer was characterized by considerably larger hardened zone. Higher abrasive wear resistance, but lower low-cycle fatigue strength in comparison with the carburized layer, characterized the gradient boride layer formed by borocarburizing and laser surface modification. The indentation craters obtained on the surface of laser-heat treated borocarburized layer revealed sufficient cohesion (HF3 standard). The use of laser-modified borocarburized layers may be advantageous under conditions of high abrasive wear of mating parts. In case of parts, which require high resistance to fatigue, the carburized layer is irreplaceable.  相似文献   

4.
Composite coatings mainly containing titanium carbides and borides were produced by laser surface alloying of Ti-6Al-4V with graphite and boron mixed powders. The test results show that the coatings have higher hardness (1600-1700 HV0.1) and are more resistant to wear than the as-received sample. Laser scanning speed and the content of alloying elements (weight ratio of graphite to boron) have an effect on both the microstructure and the wear resistance of the coatings. TEM results show that strip titanium carbides and borides grow alternately and thus restrain the formation of coarse needle-like TiB and dendritic TiC crystals produced by laser alloying of titanium alloys with boron and graphite separately.  相似文献   

5.
The growth kinetics of FeB and Fe2B phases forming on AISI M2 steel by paste boriding was studied using different values of paste thickness, treating temperature and exposure time. The growth of iron boride layers is described by the mass balance equation between phases in thermodynamic equilibrium, assuming that the boron concentration at the interfaces remain constant during the treatment. The experimental results show that boron mobility and growth kinetics of iron borides are considerably increased when the paste thickness is increased at constant values of temperature and exposure time.  相似文献   

6.
A mechanism of the transformation of crystal lattices of borides under liquid boronizing of steels has been investigated. It has been shown that nonstoichiometric borides with an FeB or Fe2B structure were the structure-formation element of phases in the hardened layer. The origin of the high rate of the formation of borides at the initial stage of chemical-thermal treatment at 800–1100°C has been elucidated. It has been established that the transformation of the Fe2B-FeB lattices was due to the enrichment of the FeB lattice by the boron vacancies.  相似文献   

7.
为获得二硫化钼(MoS2)涂层在聚变堆部件表面使用条件下的摩擦磨损特性,采用单极性脉冲磁控溅射技术在铁铬镍基高温合金A286上制备了厚度为2μm的MoS2涂层,并针对MoS2涂层在不同载荷及转速条件下的摩擦学性能展开了研究。经验证,沉积的MoS2涂层结晶度较好,沿(002)面择优取向;随测试转速的增加,摩擦系数逐渐减小,在转速为50r·min-1时,摩擦系数平均值为0.0722;在转速固定时,摩擦系数随测试载荷的增加先减小后增大,当载荷为7N时达到最小平均值0.0763。  相似文献   

8.
通过电弧熔炼制备了Fe75B16.67Si8.33非晶合金,通过真空钎焊获得了钨/低活化钢接头.通过对钎焊接头表面形貌、微观组织、成分和力学性能的表征,发现在1250℃保温10min下所获得的钎焊接头界面无孔洞、裂纹等宏观缺陷,接头组织中生成了Fe固溶体、Fe3B和FeWB金属间化合物,拉伸强度高达450MPa.  相似文献   

9.
Co-based alloy coating was deposited on tool steel by powder feeding laser cladding. Sections of such coatings were examined to reveal their microstructures and phases using scanning electron microscope (SEM) and X-ray diffractometer (XRD). The results showed that the prime phase (γ-Co dendrite) and other phases, including Cr23C6, Co7W6, and CrNi existed in the coatings. Some different solidification morphologies, such as planar (at the interface), cellular and dendrite formed, varying from the interface to the surface. Fine microstructures of γ-Co dendrite and lamellar eutectic in dendritical regions strengthened the coatings. Besides, the effects of aged treatment on the microstructure and microhardness of the surface coating were studied. Aged treatment led to the precipitations of some carbide particles (Cr7C3 and Co3C) and boride particles (Co4B) from the cladded coating, causing an increase in microhardness in the laser-cladded coating.  相似文献   

10.
In the present work, a quantitative analysis of the phase compositions by Mössbauer effect spectroscopy of solid and conventional hydrogen disproportionated Pr13.7Fe80.3B6.0 and Pr13.7Fe63.5Co16.7Zr0.1B6.0 alloys was carried out. Significant amounts of intermediate borides t-Fe3B and Pr(Fe, Co)12B6 were detected after solid hydrogen disproportionation treatment in Pr13.7Fe80.3B6.0 and Pr13.7Fe63.5Co16.7Zr0.1B6.0 alloys, respectively. After conventional hydrogenation–disproportionation–desorption–recombination treatment these phases were not detected and in no case residual Pr2Fe14B-phase was found. It was observed that the amount of intermediate borides after disproportionation can be correlated with the degree of texture after recombination at various temperatures.  相似文献   

11.
Metal matrix composites containing titanium nitrides or titanium borides raise great interest to researchers due to their high wear resistance and enhanced corrosion properties. In the present investigation composite coatings containing both titanium nitrides/carbonitrides and titanium diborides were produced on plain steel substrates using the plasma transferred arc (PTA) technique with argon-nitrogen mixtures in the plasma and shielding gas. The microstructure of the metal matrix composites (MMC) obtained was thoroughly studied and found to consist of primary titanium diboride particles surrounded by a eutectic matrix containing, apart from ferrite, both titanium diboride and titanium carbonitride particles. The wear behavior of the composite coatings was assessed by pin on disk experiments. The wear rate against both a tool steel counterbody and an alumina counterbody is of the order of 10−4 mm3/m. The friction coefficient for both the alloyed layer-tool steel system and the alloyed layer-alumina system increases up to sliding speed of 0.30 m/s and then decreases, when the sliding speed increases further. Specifically, the friction coefficients are varied between the values 0.5 and 0.65. The wear mechanism for the tribosystem alloyed layer-tool steel is characterized by plastic deformation and adherence of material coming from the alloyed layer to the surface of the ball, while for the tribosystem alloyed layer-alumina ball, severe plastic deformation and formation of oxide layer are observed.  相似文献   

12.
Mo2Ni3Si/NiSi metal silicide composite coatings with a fine microstructure consisting of Mo2Ni3Si primary dendrites and the interdendritic Mo2Ni3Si/NiSi eutectics were fabricated on austenitic stainless steel AISI 321 by laser cladding process. Small amplitude reciprocating sliding wear resistance of the coatings is evaluated as functions of normal load and slip amplitude and the wear mechanisms were discussed based on worn surface morphology observations. Results showed that the Mo2Ni3Si/NiSi coatings have excellent small amplitude reciprocating sliding wear resistance.  相似文献   

13.
Multi-layer Co-based alloy (HMSP 2537) were deposited on Ni-based superalloy plate with a TJ-TL-T5000 type CO2 laser. Sections of such coatings were examined to reveal their microstructure and phase composition using optical microscope, scanning electron microscope (SEM), and X-ray diffractometer (XRD). The hardness and wear resistance of the coatings were tested. The results showed that the prime phase (γ-Co dendrite) and other phases, such as CrNi, Co7W6, and Cr23C6 existed in the coatings. Dendrite or cellular microstructures were observed perpendicular to the interface, and coarsening microstructures were obtained as more layers deposited. Dendrite paralleling to laser scan speed was also found near the top surface of the last layer. Fine microstructures of γ-Co dendrite and lamellar eutectic in inter-dendritic regions strengthened the coatings. Microhardness and wear resistance of the coatings were much higher than that of substrate but slightly decreased with layers increased.  相似文献   

14.
In this paper, a diffusion model is proposed for studying the bilayer growth kinetics (FeB/Fe2B) on pure iron substrate during the powder-pack boriding in the temperature range of 1023-1273 K.This model based on Fick's laws was solved, under certain assumptions, considering a parabolic growth of iron borides.For this purpose, a computer simulation program was created for predicting the boride layer thickness as a function of process parameters (temperature, time and surface boron content). A fairly good agreement was observed between the simulation calculations and experimental data derived from the literature.  相似文献   

15.
辛月朋  马悦兴  郝红月  孟凡斌  刘何燕  罗鸿志 《物理学报》2016,65(14):147102-147102
对等价电子数组元Heusler合金Fe_2RuSi的原子占位、电子结构与磁性进行了理论与实验研究.第一性原理计算表明,虽然Fe_2RuSi中Fe,Ru均有8个价电子,但是Ru仍表现出强烈的占据A,C晶位倾向.基态总能最低的是Fe与Ru分别占据A,C晶位的XA结构,次低的是Fe,Ru在A,C位混乱占位的L2_1B结构,且两者能量差很小.这说明决定Heusler合金中过渡族原子占位的因素除价电子数以外还可能有原子半径和共价杂化作用等.态密度和差分电荷密度计算表明Heusler合金中主族元素与最近邻过渡族元素之间的p-d共价杂化对Heusler合金的占位有明显影响,在XA结构中Ru与Si和Fe(B)之间都存在明显的杂化作用,而在高能的L2_1结构中,Si与最近邻的Fe杂化作用相当弱.XRD测试表明在室温Fe_2RuSi存在A,C位之间的Fe-Ru反占位,形成了能量次高的L21B结构,这主要来自于混合熵对自由能的贡献及其引起的原子自发混乱占位.在5 K下Fe_2RuSi的饱和磁矩为4.87μB/f.u.,与计算值符合得相当好.  相似文献   

16.
The present study evaluates the growth kinetics of boride layers at the material surface on AISI 1045 and M2 steels during the paste boriding process. This surface hardening technique produces on the material two characteristic phases FeB, Fe2B and a transition zone, denominated diffusion zone, in the layer/substrate interface. The thermochemical treatment was done at three different temperatures: 1193, 1223 and 1273 K with two treatment times: 2 and 6 h for the 1045 steel, and 1223, 1253 and 1273 K with the same treatment times for M2 steel, modifying the boron potentials in equilibrium at the substrates surfaces. Using the mass balance equation, and assuming a linear concentration profile at the interfaces, the mobility of boron was determined on both types of steels. The influence of boron potential, treatment time and temperatures is clearly observed on the growth kinetics of boride layers.  相似文献   

17.
To investigate metal-boron bonding, a number of typical transition metal borides have been studied using ESCA; for the sake of comparison, spectra have been obtained as well on aluminium borides as on other boron compounds. Spectra are very sensitive to surface oxidation and give a semi-quantitative appreciation of the relative oxidability of boron and metal (or metals when dealing with binary metal borides). Relevant features are discussed herein.  相似文献   

18.
The present study evaluates the tool life and the fracture toughness of AISI M2 steel cutting tools boronized by the paste boriding process. The treatment was done in selective form on the tool tips of the steels. The temperatures were set at 1173 and 1273 K with 4 h of exposure time and modifying the boron carbide paste thicknesses in 3 and 4 mm. Microindentation fracture toughness method was used on the borided tool at the temperature of 1273 K and a 4 mm paste thickness, with a 100 g load at different distances from the surface. Also, the borided cutting tools were worn by the turning process that implied the machining of AISI 1018 steel increasing the nominal cutting speed, of 55 m/min, in 10 and 25% and maintaining the feed and the depth cut constants. The tool life was evaluated by the Taylor's equation that shows the dependence of the experimental parameters of the boriding process.  相似文献   

19.
State-of-the-art means of physical materials science are used to study the structure, phase composition, defect substructure, and tribological properties of a coating formed on low-carbon Hardox 450 martensite steel via the electrocontact deposition of an Fe–C–Ni–B wire and modified through subsequent irradiation with high-intensity pulsed electron beams. It is shown that electron-beam treatment results in the formation of a modified 50-μm thick surface layer, the main phases of which are the α-phase, iron boride FeB, and boron carbide B4C. In the layer modified by electron-beam treatment, the transverse size of batch martensite crystals is reduced by a factor of 3, relative to the initial Hardox 450 steel, and ranges from 50 to 70 nm. It is established that the wear resistance of the deposited layer after electron-beam treatment grows by more than 20 times with respect to the wear resistance of Hardox 450 steel, and the friction coefficient is reduced by a factor of 3.5. The microhardness of a deposited layer ~7 mm thick is more than double that of the base metal.  相似文献   

20.
激光熔覆原位合成Nb(C,N)陶瓷颗粒增强铁基金属涂层   总被引:5,自引:4,他引:1       下载免费PDF全文
采用预涂粉末激光熔覆技术,在42CrMo基体上制备出原位合成Nb(C, N)颗粒增强的铁基复合涂层。X射线及扫描电镜分析结果表明:激光熔覆获得的涂层基体为耐氧化、耐蚀性良好的Fe-Cr细晶组织及少量的-Fe相,原位合成的Nb(C, N)呈块状弥散分布在基体上。进一步的磨损试验表明:这些颗粒增强相极大增强了抗磨损性能,与未熔覆的母材相比,其磨损失重仅为母材的1/9左右; 涂层在750 ℃恒温氧化条件下具有较好的抗氧化性能,氧化层主要由NbO1.1,Cr2O3相组成; 母材的氧化产物为Fe2O3,容易脱落,保护性能较差; 激光熔覆涂层的氧化膜厚度仅为未涂层的1/5。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号