首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple method, derived from DFT, for improving the energy of a trial density is modified for the case of atoms. It is assumed that errors in the interelectronic repulsion are the only significant ones. The errors in the energies of single‐ζ Slater orbitals for the atoms from He to Ne are reduced an average factor of 21. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

2.
Starting from a formally exact density-functional representation of the frequency-dependent linear density response and exploiting the fact that the latter has poles at the true excitation energies, we develop a density-functional method for the calculation of excitation energies. Simple additive corrections to the Kohn-Sham single-particle transition energies are derived whose actual computation only requires the ordinary static Kohn-Sham orbitals and the corresponding eigenvalues. Numerical results are presented for spin-singlet and triplet energies. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
Time-dependent density matrix functional theory can be formulated in terms of coupled-perturbed response equations, in which a coupling matrix K(omega) features, analogous to the well-known time-dependent density functional theory (TDDFT) case. An adiabatic approximation is needed to solve these equations, but the adiabatic approximation is much more critical since there is not a good "zero order" as in TDDFT, in which the virtual-occupied Kohn-Sham orbital energy differences serve this purpose. We discuss a simple approximation proposed earlier which uses only results from static calculations, called the static approximation (SA), and show that it is deficient, since it leads to zero response of the natural orbital occupation numbers. This leads to wrong behavior in the omega-->0 limit. An improved adiabatic approximation (AA) is formulated. The two-electron system affords a derivation of exact coupled-perturbed equations for the density matrix response, permitting analytical comparison of the adiabatic approximation with the exact equations. For the two-electron system also, the exact density matrix functional (2-matrix in terms of 1-matrix) is known, enabling testing of the static and adiabatic approximations unobscured by approximations in the functional. The two-electron HeH(+) molecule shows that at the equilibrium distance, SA consistently underestimates the frequency-dependent polarizability alpha(omega), the adiabatic TDDFT overestimates alpha(omega), while AA improves upon SA and, indeed, AA produces the correct alpha(0). For stretched HeH(+), adiabatic density matrix functional theory corrects the too low first excitation energy and overpolarization of adiabatic TDDFT methods and exhibits excellent agreement with high-quality CCSD ("exact") results over a large omega range.  相似文献   

4.
With dispersion-corrected density functional theory (DFT-D3) intermolecular interaction energies for a diverse set of noncovalently bound protein-ligand complexes from the Protein Data Bank are calculated. The focus is on major contacts occurring between the drug molecule and the binding site. Generalized gradient approximation (GGA), meta-GGA, and hybrid functionals are used. DFT-D3 interaction energies are benchmarked against the best available wave function based results that are provided by the estimated complete basis set (CBS) limit of the local pair natural orbital coupled-electron pair approximation (LPNO-CEPA/1) and compared to MP2 and semiempirical data. The size of the complexes and their interaction energies (ΔE(PL)) varies between 50 and 300 atoms and from -1 to -65 kcal/mol, respectively. Basis set effects are considered by applying extended sets of triple- to quadruple-ζ quality. Computed total ΔE(PL) values show a good correlation with the dispersion contribution despite the fact that the protein-ligand complexes contain many hydrogen bonds. It is concluded that an adequate, for example, asymptotically correct, treatment of dispersion interactions is necessary for the realistic modeling of protein-ligand binding. Inclusion of the dispersion correction drastically reduces the dependence of the computed interaction energies on the density functional compared to uncorrected DFT results. DFT-D3 methods provide results that are consistent with LPNO-CEPA/1 and MP2, the differences of about 1-2 kcal/mol on average (<5% of ΔE(PL)) being on the order of their accuracy, while dispersion-corrected semiempirical AM1 and PM3 approaches show a deviating behavior. The DFT-D3 results are found to depend insignificantly on the choice of the short-range damping model. We propose to use DFT-D3 as an essential ingredient in a QM/MM approach for advanced virtual screening approaches of protein-ligand interactions to be combined with similarly "first-principle" accounts for the estimation of solvation and entropic effects.  相似文献   

5.
Time-dependent density functional theory (TD-DFT) in the adiabatic formulation exhibits known failures when applied to predicting excitation energies. One of them is the lack of the doubly excited configurations. On the other hand, the time-dependent theory based on a one-electron reduced density matrix functional (time-dependent density matrix functional theory, TD-DMFT) has proven accurate in determining single and double excitations of H(2) molecule if the exact functional is employed in the adiabatic approximation. We propose a new approach for computing excited state energies that relies on functionals of electron density and one-electron reduced density matrix, where the latter is applied in the long-range region of electron-electron interactions. A similar approach has been recently successfully employed in predicting ground state potential energy curves of diatomic molecules even in the dissociation limit, where static correlation effects are dominating. In the paper, a time-dependent functional theory based on the range-separation of electronic interaction operator is rigorously formulated. To turn the approach into a practical scheme the adiabatic approximation is proposed for the short- and long-range components of the coupling matrix present in the linear response equations. In the end, the problem of finding excitation energies is turned into an eigenproblem for a symmetric matrix. Assignment of obtained excitations is discussed and it is shown how to identify double excitations from the analysis of approximate transition density matrix elements. The proposed method used with the short-range local density approximation (srLDA) and the long-range Buijse-Baerends density matrix functional (lrBB) is applied to H(2) molecule (at equilibrium geometry and in the dissociation limit) and to Be atom. The method accounts for double excitations in the investigated systems but, unfortunately, the accuracy of some of them is poor. The quality of the other excitations is in general much better than that offered by TD-DFT-LDA or TD-DMFT-BB approximations if the range-separation parameter is properly chosen. The latter remains an open problem.  相似文献   

6.
Approximate molecular calculations via standard Kohn-Sham density functional theory are exactly reproduced by performing self-consistent calculations on isolated fragments via partition density functional theory [P. Elliott, K. Burke, M. H. Cohen, and A. Wasserman, Phys. Rev. A 82, 024501 (2010)]. We illustrate this with the binding curves of small diatomic molecules. We find that partition energies are in all cases qualitatively similar and numerically close to actual binding energies. We discuss qualitative features of the associated partition potentials.  相似文献   

7.
8.
《Chemical physics letters》2003,367(5-6):778-784
Non-expanded dispersion energies are calculated from time-dependent coupled-perturbed density functional theory (DFT) employing various non-hybrid and hybrid exchange-correlation potentials and suitable adiabatic local density approximations for the exchange-correlation kernel. Considering the dimer systems He2, Ne2, Ar2, NeAr, NeHF, ArHF, (H2)2, (HF)2, and (H2O)2 it is shown that the effects of intramonomer electron correlation on the dispersion energy are accurately reproduced with the PBE0AC exchange-correlation potential. In contrast, the uncoupled sum-over-states approximation yields inacceptable errors. These are mainly due to neglect of the Coulomb and exchange-correlation kernels and therefore, not substantially improved through an asymptotic correction of the exchange-correlation potential.  相似文献   

9.
We present a framework for embedding a highly accurate coupled-cluster calculation within a larger density functional calculation. We use a perturbative buffer to help insulate the coupled-cluster region from the rest of the system. Regions are defined, not in real space, but in Hilbert space, though connection between the two can be made by spatial localization of single-particle orbitals. Relations between our embedding approach and some similar techniques are discussed. We present results for small sample systems for which we can extract essentially exact results, demonstrating that our approach seems to work quite well and is generally more reliable than some of the related approaches due to the introduction of additional interaction terms.  相似文献   

10.
Aspects of density functional resonance theory (DFRT) [D. L. Whitenack and A. Wasserman, Phys. Rev. Lett. 107, 163002 (2011)], a recently developed complex-scaled version of ground-state density functional theory (DFT), are studied in detail. The asymptotic behavior of the complex density function is related to the complex resonance energy and system's threshold energy, and the function's local oscillatory behavior is connected with preferential directions of electron decay. Practical considerations for implementation of the theory are addressed including sensitivity to the complex-scaling parameter, θ. In Kohn-Sham DFRT, it is shown that almost all θ-dependence in the calculated energies and lifetimes can be extinguished via use of a proper basis set or fine grid. The highest occupied Kohn-Sham orbital energy and lifetime are related to physical affinity and width, and the threshold energy of the Kohn-Sham system is shown to be equal to the threshold energy of the interacting system shifted by a well-defined functional. Finally, various complex-scaling conditions are derived which relate the functionals of ground-state DFT to those of DFRT via proper scaling factors and a non-Hermitian coupling-constant system.  相似文献   

11.
Zero-point vibrational corrections are computed at the BP86/AE1 level for the set of 50 transition-metal/ligand bonds that have recently been proposed as testing ground for DFT methods, because of the availability of precise experimental gas-phase geometries (Bühl and Kabrede, J Chem Theory Comput 2006, 2, 1282). These corrections are indicated to be transferable to a large extent between various density-functional/basis-set combinations, so that they can be used to estimate zero-point averaged r0g distances from re values optimized at other theoretical levels. Applying this approach to a number of popular DFT levels does not, in general, improve their overall accuracy in terms of mean and standard deviations from experiment. The hybrid variant of the meta-functional TPSS is confirmed as promising choice for computing structures of transition-metal complexes.  相似文献   

12.
An empirical correction to density functional theory (DFT) has been developed in this study. The approach, called correlation corrected atomization–dispersion (CCAZD), involves short- and long-range terms. Short-range correction consists of bond (1,2-) and angle (1,3-) interactions, which remedies the deficiency of DFT in describing the proto-branching stabilization effects. Long-range correction includes a Buckingham potential function aiming to account for the dispersion interactions. The empirical corrections of DFT were parameterized to reproduce reported ΔH f values of the training set containing alkane, alcohol and ether molecules. The ΔH f of the training set molecules predicted by the CCAZD method combined with two different DFT methods, B3LYP and MPWB1K, with a 6-31G* basis set agreed well with the experimental data. For 106 alkane, alcohol and ether compounds, the average absolute deviations (AADs) in ΔH f were 0.45 and 0.51 kcal/mol for B3LYP- and MPWB1K-CCAZD, respectively. Calculations of isomerization energies, rotational barriers and conformational energies further validated the CCAZD approach. The isomerization energies improved significantly with the CCAZD treatment. The AADs for 22 energies of isomerization reactions were decreased from 3.55 and 2.44 to 0.55 and 0.82 kcal/mol for B3LYP and MPWB1K, respectively. This study also provided predictions of MM4, G3, CBS-QB3 and B2PLYP-D for comparison. The final test of the CCAZD approach on the calculation of the cellobiose analog potential surface also showed promising results. This study demonstrated that DFT calculations with CCAZD empirical corrections achieved very good agreement with reported values for various chemical reactions with a small basis set as 6-31G*.  相似文献   

13.
A recently developed empirical dispersion correction (Grimme et al., J. Chem. Phys. 2010, 132, 154104) to standard density functional theory (DFT‐D3) is implemented in the plane‐wave program package VASP. The DFT‐D3 implementation is compared with an implementation of the earlier DFT‐D2 version (Grimme, J. Comput. Chem. 2004, 25, 1463; Grimme, J. Comput. Chem. 2006, 27, 1787). Summation of empirical pair potential terms is performed over all atom pairs in the reference cell and over atoms in shells of neighboring cells until convergence of the dispersion energy is obtained. For DFT‐D3, the definition of coordination numbers has to be modified with respect to the molecular version to ensure convergence. The effect of three‐center terms as implemented in the original molecular DFT‐D3 version is investigated. The empirical parameters are taken from the original DFT‐D3 version where they had been optimized for a reference set of small molecules. As the coordination numbers of atoms in bulk and surfaces are much larger than in the reference compounds, this effect has to be discussed. The results of test calculations for bulk properties of metals, metal oxides, benzene, and graphite indicate that the original parameters are also suitable for solid‐state systems. In particular, the interlayer distance in bulk graphite and lattice constants of molecular crystals is considerably improved over standard functionals. With the molecular standard parameters (Grimme et al., J. Chem. Phys. 2010, 132, 154104; Grimme, J. Comput. Chem. 2006, 27, 1787) a slight overbinding is observed for ionic oxides where dispersion should not contribute to the bond. For simple adsorbate systems, such as Xe atoms and benzene on Ag(111), the DFT‐D implementations reproduce experimental results with a similar accuracy as more sophisticated approaches based on perturbation theory (Rohlfing and Bredow, Phys. Rev. Lett. 2008, 101, 266106). © 2012 Wiley Periodicals, Inc.  相似文献   

14.
The authors present an occupation number averaging scheme for time-dependent density functional response theory (TD-DFRT) in frequency domain. The known problem that TD-DFRT within the local (spin) density approximation (LDA/LSDA) inaccurately predicts Rydberg and charge-transfer excitation energies has been reexamined from the methodology of linear response, without explicit correction of the exchange-correlation potential. The working equations of TD-DFRT are adapted to treat arbitrary difference of orbital occupation numbers, using the nonsymmetric matrix form of Casida's formulation of TD-DFRT [M. E. Casida, in Recent Advances in Density Functional Methods, edited by D. P. Chong (World Scientific, Singapore, 1995), Pt. I, p. 155]. The authors' scheme is applied to typical closed-shell and open-shell molecular systems by examining the dependence of excitation energies on the fraction of excited electron. Good performance of this modified linear response scheme is shown, and is consistent with the authors' previous examination by the real-time propagation approach, suggesting that the calculation of average excitation energies might be one of the ways to better decode excitation energies from LDA/LSDA. Different techniques for treating singlet, triplet, and doublet states are discussed.  相似文献   

15.
Time-dependent four-component relativistic density functional theory within the linear response regime is developed for calculating excitation energies of heavy element containing systems. Since spin is no longer a good quantum number in this context, we resort to time-reversal adapted Kramers basis when deriving the coupled Dirac-Kohn-Sham equation. The particular implementation of the formalism into the Beijing density functional program package utilizes the multipolar expansion of the induced density to facilitate the construction of the induced Coulomb potential. As the first application, pilot calculations on the valence excitation energies and fine structures of the rare gas (Ne to Rn) and Group 12 (Zn to Hg) atoms are reported. To the best of our knowledge, it is the first time to be able to account for spin-orbit coupling within time-dependent density functional theory for excitation energies.  相似文献   

16.
Ewald summation is used to apply semiempirical long-range dispersion corrections (Grimme, J Comput Chem 2006, 27, 1787; 2004, 25, 1463) to periodic systems in density functional theory. Using the parameters determined before for molecules and the Perdew-Burke-Ernzerhof functional, structure parameters and binding energies for solid methane, graphite, and vanadium pentoxide are determined in close agreement with observed values. For methane, a lattice constant a of 580 pm and a sublimation energy of 11 kJ mol(-1) are calculated. For the layered solids graphite and vanadia, the interlayer distances are 320 pm and 450 pm, respectively, whereas the graphite interlayer energy is -5.5 kJ mol(-1) per carbon atom and layer. Only when adding the semiempirical dispersion corrections, realistic values are obtained for the energies of adsorption of C(4) alkenes in microporous silica (-66 to -73 kJ mol(-1)) and the adsorption and chemisorption (alkoxide formation) of isobutene on acidic sites in the micropores of zeolite ferrierite (-78 to -94 kJ mol(-1)). As expected, errors due to missing self-interaction correction as in the energy for the proton transfer from the acidic site to the alkene forming a carbenium ion are not affected by the dispersion term. The adsorption and reaction energies are compared with the results from M?ller-Plesset second-order perturbation theory with basis set extrapolation.  相似文献   

17.
18.
We present density-functional theory for time-dependent response functions up to and including cubic response. The working expressions are derived from an explicit exponential parametrization of the density operator and the Ehrenfest principle, alternatively, the quasienergy ansatz. While the theory retains the adiabatic approximation, implying that the time-dependency of the functional is obtained only implicitly-through the time dependence of the density itself rather than through the form of the exchange-correlation functionals-it generalizes previous time-dependent implementations in that arbitrary functionals can be chosen for the perturbed densities (energy derivatives or response functions). In particular, general density functionals beyond the local density approximation can be applied, such as hybrid functionals with exchange correlation at the generalized-gradient approximation level and fractional exact Hartree-Fock exchange. With our implementation the response of the density can always be obtained using the stated density functional, or optionally different functionals can be applied for the unperturbed and perturbed densities, even different functionals for different response order. As illustration we explore the use of various combinations of functionals for applications of nonlinear optical hyperpolarizabilities of a few centrosymmetric systems; molecular nitrogen, benzene, and the C(60) fullerene. Considering that vibrational, solvent, and local field factors effects are left out, we find in general that very good experimental agreement can be obtained for the second dynamic hyperpolarizability of these systems. It is shown that a treatment of the response of the density beyond the local density approximation gives a significant effect. The use of different functional combinations are motivated and discussed, and it is concluded that the choice of higher order kernels can be of similar importance as the choice of the potential which governs the Kohn-Sham orbitals.  相似文献   

19.
Using the variational technique, eigensolutions of the radial Herman-Asgharian equation accounting for non-adiabatic terms are determined within the experimental accuracy of the high-resolution spectroscopy. This method, which is independent of the algebraic and numerical approaches currently used in the literature for a "direct-potential-fit" of diatomic rovibrational spectra, is shown to be useful for validation of available calculations and for resolving some controversial issues. Comparative discussions are reported in this paper for a dozen diatomic molecules.  相似文献   

20.
We present density functional calculations for the interaction energy of monosubstituted benzene dimers. Our approach utilizes a recently developed fully nonlocal correlation energy functional, which has been applied to the pure benzene dimer and several other systems with promising results. The interaction energy as a function of monomer distance was calculated for four different substituents in a sandwich and two T-shaped configurations. In addition, we considered two methods for dealing with exchange, namely, using the revPBE generalized gradient functional as well as full Hartree-Fock. Our results are compared with other methods, such as Moller-Plesset and coupled-cluster calculations, thereby suggesting the usefulness of our approach. Since our density functional based method is considerably faster than other standard methods, it provides a computationally inexpensive alternative, which is of particular interest for larger systems where standard calculations are too expensive or infeasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号