共查询到20条相似文献,搜索用时 15 毫秒
1.
Donghai Mei 《Journal of Energy Chemistry》2013,22(3):524-532
Molecular adsorption of formate and carboxyl on stoichiometric CeO2(111) and CeO2(110) surfaces was studied using periodic density functional theory (DFT+U) calculations. Two distinguishable adsorption modes (strong and weak) of formate are identified. The bidentate configuration is more stable than the monodentate adsorption configuration. Both formate and carboxyl bind at the more open CeO2(110) surface are stronger. The calculated vibrational frequencies of two adsorbed species are consistent with the experimental measurements. Finally, the effects of U parameters on the adsorption of formate and carboxyl over both CeO2 surfaces were investigated. We found that the geometrical configurations of two adsorbed species are not affected by different U parameters (U = 0, 5, and 7). However, the calculated adsorption energy of carboxyl pronouncedly increases with the U value while the adsorption energy of formate only slightly changes (<0.2 eV). The Bader charge analysis shows the opposite charge transfer occurs for formate and carboxyl adsorption where the adsorbed formate is negatively charge while the adsorbed carboxyl is positively charged. Interestingly, with the increasing U parameter, the amount of charge is also increased. 相似文献
2.
利用密度泛函理论系统研究了O2与CO在CeO2(110)表面的吸附反应行为. 研究表明, O2在洁净的CeO2(110)表面吸附热力学不利, 而在氧空位表面为强化学吸附, O2分子被活化, 可能是重要的氧化反应物种. CO在洁净的CeO2(110)表面有化学吸附与物理吸附两种构型, 前者形成二齿碳酸盐物种, 后者与表面仅存在弱的相互作用. 在氧空位表面, CO可分子吸附或形成碳酸盐物种, 相应吸附能均较低. 当表面氧空位吸附O2后(O2/Ov), CO可吸附生成碳酸盐或直接生成CO2, 与原位红外光谱结果相一致. 过渡态计算发现,O2/Ov/CeO2(110)表面的三齿碳酸盐物种经两齿、单齿过渡态脱附生成CO2. 利用扩展休克尔分子轨道理论分析了典型吸附构型的电子结构, 说明表面碳酸盐物种三个氧原子电子存在离域作用, 物理吸附的CO及生成的CO2电子结构与相应自由分子相似. 相似文献
3.
《Chemical physics letters》1986,130(3):160-163
Electron-energy loss (EELS) spectra and thermal desorption (TDS) traces of carbon monoxide bound to the (100) surface of aluminum are presented. CO chemisorption on clean Al(100) is characterized by vibrational bands at 440 and 2060 cm−1 and by desorption at 125 K. Oxide “islands”, formed by oxidation in O2 at 575 K, have no observed electronic influence on open metallic areas of the adsorbent but merely block CO adsorption sites. 相似文献
4.
The direct adsorption of Pt(2) dimers on CeO(2)(111) and their formation from isolated adsorbed Pt atoms have been studied using periodic slab model calculations based on density functional theory and including the so-called on-site Hubbard parameter (GGA + U). In the most stable configuration Pt(2) is found to be almost parallel to the surface; the electronic ground state is closed shell and there is no evidence of charge transfer towards or from the surface. The formation of Pt(2) from two single adsorbed Pt atoms involves a rather small energy barrier of ~0.10 eV only. On the contrary, dissociation of adsorbed Pt(2) requires to overcome a considerable barrier of ~1.43 eV. This indicates that once Pt(2) is formed it will remain on the surface, thus likely triggering the growth of larger supported Pt particles. 相似文献
5.
Zeineb Helali Alexis Markovits Christian Minot Manef Abderrabba 《Structural chemistry》2012,23(5):1309-1321
We performed periodic DFT calculations for adsorption of metal atoms on a perfect rutile TiO2(110) surface (at low coverage, ???=?1/3) to investigate the interaction of an individual metal atom with TiO2 and to compare it with a study previously done on MgO(100). We considered partial period of Mendeleev??s table from K to Zn. The overall evolution of the adsorption energies shows two maxima as for MgO(100). Two main differences, however, exist: the adsorption energy is much stronger and the first maximum is enhanced relative to the second one. This is attributed to the reducibility of the surface titanium cation. When the adsorbed metal is electropositive, it is oxidized under adsorption transferring electrons to titanium cations. We present the effect of introducing a Hubbard term to the gradient-corrected approximation band-structure Hamiltonian (GGA?+?U). The introduction of a reasonable Hubbard correction preserves the trends and allows localizing the electron of the reduction on Ti atoms in the near surface region. Finally, our results conclude that for heavier M atoms of the period, insertion is energetically favored relative to adsorption. 相似文献
6.
Xiu‐Juan Zou Kai Ning Ding Yong Fan Zhang Jun Qian Li 《International journal of quantum chemistry》2011,111(5):915-922
The adsorption and decomposition of acetonitrile on the TiO2 (110) surface have been investigated with first principles calculations. Our results reveal that both C?N and C? C bonds of acetonitrile become weakened after adsorption. Acetonitrile behaves as an electron donor, and electrons transfer from acetonitrile to substrate is obvious. The reaction mechanism of further decomposition of acetonitrile on TiO2 (110) surface is also investigated, and the result shows that acetonitrile can decompose into CH3 and CN fragments and form OCH3 and NCO groups on the TiO2 (110) surface, which consists with the experimental results. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011 相似文献
7.
利用密度泛函理论系统研究了贵金属原子(Au、Pd、Pt和Rh)在CeO2( 111)表面的吸附行为.结果表明,Au吸附在氧顶位最稳定,Pd、Pt倾向吸附于氧桥位,而Rh在洞位最稳定.当金属原子吸附在氧顶位时,吸附强度依次为Pt >Rh> Pd>Au.Pd、Pt与Rh吸附后在Ce 4 f、O2p电子峰间出现掺杂峰;Au未出现掺杂电子峰,其d电子峰与表面O2p峰在-4 -1 eV重叠.态密度分析表明,Au吸附在氧顶位、Pd与Pt吸附在桥位、Rh吸附在洞位时,金属与CeO2(111)表面氧原子作用较强,这与Bader电荷分析结果相一致. 相似文献
8.
Xiujuan Zou Kaining Ding Yonfang Zhang Shanshan Yao 《Theoretical chemistry accounts》2011,128(1):63-67
The adsorption and decomposition of acetonitrile on the SnO2 (110) surface were investigated by means of first-principles computations. It is found that acetonitrile could be relatively easier decomposed into CH3 and CN fragments on the SnO2 (110) surface than on TiO2 (110), which agrees with the experimental results. The higher activity of the SnO2 (110) surface than the TiO2 (110) surface can be attributed to its higher work function and closer molecular orbital energies. 相似文献
9.
Salin A 《The Journal of chemical physics》2006,124(10):104704
We have calculated the six-dimensional (6D) potential energy surface for H2 in front of a frozen Cu(110) surface using density functional theory for 22 H2-surface configurations and the corrugation reducing procedure to interpolate between them. We carry out classical trajectory calculations on the dissociative adsorption process and find excellent agreement with measurements. We find that it is of prominent importance to account for the rovibrational state distribution in the incident H2 beam. A straightforward analysis leads to the conclusion that the motion along the surface does not play an appreciable role in the dynamics whereas the dynamical role of molecular rotation is crucial. The latter fact precludes any interpretation of dissociation in terms of a static concept such as "barrier distributions." 相似文献
10.
The forms of oxygen adsorbed on Pt(110) are characterized using Electron Energy loss Spectroscopy (EELS).
Pt(110).相似文献
11.
Ab initio embedded-cluster calculations have been performed for the CeO2(110) surface using temperature induced structures from molecular dynamics (MD) snapshots. As a first step towards understanding how temperature induced distortions of the surface structure influence the surface oxygen reactivity, the energy cost of removing an O atom from the surface was calculated for 41 snapshots from the MD simulation at 300 K. The quantum mechanical embedded-cluster calculations show that already at 300 K the dynamics causes significant fluctuations (root mean square of 0.37 eV) in the O vacancy formation energy (Evac) while the distribution of the two excess electrons associated with the vacancy is virtually unaffected by the surface dynamics and remains localized on the two Ce ions close to the vacancy. It is also found that the quantum mechanical Evac fluctuations can be reproduced by oxygen vacancy calculations using only the relaxed shell-model force field (FF) itself and the MD geometries. Using the FF as the interaction model, the effect of raising the temperature to 750 K and the effect of doping with Ca were investigated for the oxygen vacancy formation. 相似文献
12.
Reaction mechanisms for the interactions between CeO(2)(111) and (110) surfaces are investigated using periodic density functional theory (DFT) calculations. Both standard DFT and DFT+U calculations to examine the effect of the localization of Ce 4f states on the redox chemistry of H(2)-CeO(2) interactions are described. For mechanistic studies, molecular and dissociative local minima are initially located by placing an H(2) molecule at various active sites of the CeO(2) surfaces. The binding energies of physisorbed species optimized using the DFT and DFT+U methods are very weak. The dissociative adsorption reactions producing hydroxylated surfaces are all exothermic; exothermicities at the DFT level range from 4.1 kcal mol(-1) for the (111) to 26.5 kcal mol(-1) for the (110) surface, while those at the DFT+U level are between 65.0 kcal mol(-1) for the (111) and 81.8 kcal mol(-1) for the (110) surface. Predicted vibrational frequencies of adsorbed OH and H(2)O species on the surfaces are in line with available experimental and theoretical results. Potential energy profiles are constructed by connecting molecularly adsorbed and dissociatively adsorbed intermediates on each CeO(2) surface with tight transition states using the nudged elastic band (NEB) method. It is found that the U correction method plays a significant role in energetics, especially for the intermediates of the exit channels and products that are partially reduced. The surface reduction reaction on CeO(2)(110) is energetically much more favorable. Accordingly, oxygen vacancies are more easily formed on the (110) surface than on the (111) surface. 相似文献
13.
The electron-induced dissociation of CO(2) adsorbed at the oxygen vacancy defect on the TiO(2)(110) surface has been investigated at the single-molecular level using scanning tunneling microscopy (STM). Electron injection from the STM tip into the adsorbed CO(2) induces the dissociation of CO(2). The oxygen vacancy defect is found to be healed by the oxygen atom released during the dissociation process. Statistical analysis shows that the dissociation of CO(2) is one-electron process. The bias-dependent dissociation yield reveals that the threshold energy for electron-induced dissociation of CO(2) is 1.4 eV above the conduction-band minimum of TiO(2). The formation of a transient negative ion by the injected electron is considered to be the key process in CO(2) dissociation. 相似文献
14.
We have performed CCSD(T), MP2, and DF-LMP2 calculations of the interaction energy of CO on the MgF(2)(110) surface by applying the method of increments and an embedded cluster model. In addition, we performed periodic HF, B3LYP, and DF-LMP2 calculations and compare them to the cluster results. The incremental CCSD(T) calculations predict an interaction energy of E(int) = -0.37?eV with a C-down orientation of CO above a Mg(2+) ion at the surface with a basis set of VTZ quality. We find that electron correlation constitutes about 50% of the binding energy and a detailed evaluation of the increments shows that the largest contribution to the correlation energy originates from the CO interaction with the closest F ions on the second layer. 相似文献
15.
Density functional theory was used to study the CO oxidation catalytic activity of CeO(2)-supported Au nanoparticles (NPs). Experimental observations on CeO(2) show that the surface of CeO(2) is enriched with oxygen vacancies. We compare CO oxidation by a Au(13) NP supported on stoichiometric CeO(2) (Au(13)@CeO(2)-STO) and partially reduced CeO(2) with three vacancies (Au(13)@CeO(2)-3VAC). The structure of the Au(13) NP was chosen to minimize structural rearrangement during CO oxidation. We suggest three CO oxidation mechanisms by Au(13)@CeO(2): CO oxidation by coadsorbed O(2), CO oxidation by a lattice oxygen in CeO(2), and CO oxidation by O(2) bound to a Au-Ce(3+) anchoring site. Oxygen vacancies are shown to open a new CO oxidation pathway by O(2) bound to a Au-Ce(3+) anchoring site. Our results provide a design strategy for CO oxidation on supported Au catalysts. We suggest lowering the vacancy formation energy of the supporting oxide, and using an easily reducible oxide to increase the concentration of reduced metal ions, which act as anchoring sites for O(2) molecules. 相似文献
16.
The adsorption of pyridine on a clean Ag(110) surface was characterized with ultraviolet photoemission spectroscopy, flash desorption and Auger electron spectroscopy. Pyridine condenses on the silver surface below 190 K and rapidly forms multiple layers. At temperatures above 235 K pyridine is present in submonolayer concentrations. At 275 K pyridine is chemisorbed on Ag(110). 相似文献
17.
Dri C Africh C Esch F Comelli G Dubay O Köhler L Mittendorfer F Kresse G Dudin P Kiskinova M 《The Journal of chemical physics》2006,125(9):094701
The initial oxidation of the Rh(110) surface was studied by scanning tunneling microscopy, core level spectroscopy, and density functional theory. The experiments were carried out exposing the Rh(110) surface to molecular or atomic oxygen at temperatures in the 500-700 K range. In molecular oxygen ambient, the oxidation terminates at oxygen coverage close to a monolayer with the formation of alternating islands of the (10x2) one-dimensional surface oxide and (2x1)p2mg adsorption phases. The use of atomic oxygen facilitates further oxidation until a structure with a c(2x4) periodicity develops. The experimental and theoretical results reveal that the c(2x4) structure is a "surface oxide" very similar to the hexagonal O-Rh-O trilayer structures formed on the Rh(111) and Rh(100) substrates. Some of the experimentally found adsorption phases appear unstable in the phase diagram predicted by thermodynamics, which might reflect kinetic hindrance. The structural details, core level spectra, and stability of the surface oxides formed on the three basal planes are compared with those of the bulk RhO2 and Rh2O3. 相似文献
18.
19.
Titanium dioxide with CoB amorphous alloys nanoparticles deposited on the surface is known to exhibit higher catalytic activity than the CoB amorphous. A study of the structure of such system is necessary to understand this effect. A quantum chemical study of Co2B2 on the TiO2 (110) surface was studied using periodic slab model within the framework of density functional theory (DFT). The results of geometry optimization indicated that the most stable model of adsorption was Co2B2 cluster adsorbed on the hollow site of TiO2.The adsorption energy calculated for Co2B2 on the hollow site was 439.3 kJ/mol.The adsorption of CO and O2 was further studied and the results indicated that CO and O2 are preferred to adsorb on the Co2 site. Co-adsorption of CO and O2 shows that Co2B2/TiO2 is a good catalyst for the oxidation of CO to carbon dioxide in the presence of oxygen. 相似文献
20.
Foster AS Gal AY Nieminen RM Shluger AL 《The journal of physical chemistry. B》2005,109(10):4554-4560
In this work, we use first principles simulations to provide features of the dynamic scanning force microscopy imaging of adsorbed organic layers on insulating surfaces. We consider monolayers of formic (HCOOH) and acetic (CH(3)COOH) acid and a mixed layer of acetic and trifluoroacetic acids (CF(3)COOH) on the TiO(2)(110) surface and study their interaction with a silicon dangling bond tip. The results demonstrate that the silicon tip interacts more strongly with the substrate and the COO(-) group than the adsorbed acid headgroups, and, therefore, molecules would appear dark in images. The pattern of contrast and apparent height of molecules is determined by the repulsion between the tip and the molecular headgroups and by significant deformation of the monolayer and individual molecules. The height of the molecule on the surface and the size of the headgroup play a large role in determining access of the tip to the substrate and, hence, the contrast in images. Direct imaging of the molecules themselves could be obtained by providing a functionalized tip with attraction to the molecular headgroups, for example, a positive potential tip. 相似文献