首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An inclined rectangular jet in a turbulent boundary layer-vortex flow   总被引:1,自引:0,他引:1  
A model test study was performed on streamwise vortices generated by a rectangular jet in an otherwise flat-plate turbulent boundary layer. The study was conducted in a low speed wind tunnel. The rectangular jet had a cross-section size of 28 mm by 5.5 mm. The oncoming boundary layer had a 99.5 percent thickness of 25 mm. The freestream speed of the oncoming flow was 20 m/s. Measurements were performed with a three-element LDA system. The effects of skew angle and streamwise development of vortex were investigated and the mean flow properties are presented. The study showed that the rectangular jet was able to produce a streamwise vortex of higher strength than that of a round jet, while at the same time keeping the same size and shape as that of a round jet. A 63% increase in the maximum vorticity was found. The 45 skew angle was identified as the optimal skew angle for vortex production. Received: 24 June 1998/ Accepted: 21 May 1999  相似文献   

2.
Experiments are reported in which the heat flux distribution near a single circular, sonic transverse jet on a flat plate exposed to a hypersonic (Mach 6.7) freestream flow was quantitatively measured using thermochromic liquid crystals. The freestream conditions were such that the boundary layer growth on the plate ahead of the jet was laminar. The results indicate that the interaction of the jet with the freestream flow created a complex flowfield with regions of separation and reattachment which caused localised enhancements to the heat flux upstream and to the side of the jet, the magnitudes of which were sensitive to both jet plenum pressure and jet gas composition. Received 28 August 1996 / Accepted 6 June 1997  相似文献   

3.
Problems of origination and evolution of streamwise vortex structures in an initial region of the shear layer of a supersonic jet are discussed. Streamwise vortices are generated with the use of artificial microroughnesses on the internal surface of polished nozzles. Results of Pitot pressure distributions measured in a supersonic nonisobaric jet both in the radial and azimuthal directions are presented. Streamline curvature in the initial region of supersonic nonisobaric jets has a significant effect on evolution of streamwise vortex structures. Azimuthal heterogeneity corresponding to streamwise vortices in the shear layer is analyzed with the use of both the Fourier analysis and wavelet analysis. PACS 47.40.Ki, 47.20.Ft, 02.30.Nw  相似文献   

4.
This paper presents numerical results for the receptivity of three laminar boundary layers with zero (ZPG), adverse (APG) and favourable (FPG) pressure gradients. Each boundary layer is subjected to a series of simple freestream waveforms which can be considered as constituent parts of either an isotropic or a non-isotropic turbulent freestream. Each freestream waveform has a single frequency in each spatial direction and is divided into two mutually perpendicular components. The first component has a zero spanwise velocity and hence lies in the streamwise normal plane whereas the second component lies in a plane which is perpendicular both to this plane and the spatial frequency vector. High boundary layer receptivities are only obtained for a minority of these waveforms and so only the resulting flow structures for these waveforms are considered in detail. The dominant flow structures are identified as either Tollmien Schlichting (T-S) waves or streaky structures. The streaky structures can be induced by both freestream components, but the response to the second component, which results in streamwise vortices in the freestream, is considerably stronger and occurs over a much larger streamwise frequency range. The boundary layer is only receptive to a relatively narrow band of spanwise wavelengths ranging from approximately one to four times the local boundary layer thickness. The APG leads to receptivities which are more than double those for the FPG case. The ratio of the freestream fluctuation streamwise wavelength to the distance from the plate leading edge is identified as an important influential parameter for receptivity leading to streaks. Significant T-S activity is only observed for APG, but is also detected for ZPG.  相似文献   

5.
为了能够更好地了解不定源喷嘴(indeterminate origin nozzle)射流中的物理过程,本文应用平面激光诱导荧光技术对一个大尺度的水射流进行了实验研究。流场显示的实验结果表明不定源喷嘴在射流的剪切层引入了蘑菇形反向旋转的涡对。这些涡的矢量方向与射流方向相同或相反,被称为流向涡(streamwise vortex)。由于射流中存在开尔文-亥姆霍兹不稳定,每当一个横向涡(spanwise vortex,即涡的矢量方向与射流方向垂直)从喷嘴脱流时会产生瞬时的低压,该瞬时低压促使向内发展的流向涡对在喷嘴的凹槽处生成。这些涡对在向下游流动的过程中会重组并在喷嘴的尖峰面生成向外发展的涡对。这些流向涡极大地影响了射流的发展。流向涡与横向涡的相互作用促使射流更早地发展成为湍流。由于流向涡同时也在射流中引入了径向的剪切流动,因此导致了更多的湍流生成从而增强了射流与周围流体的混合。  相似文献   

6.
为了能够更好地了解不定源喷嘴(indeterminate origin nozzle)射流中的物理过程,本文应用平面激光诱导荧光技术对一个大尺度的水射流进行了实验研究。流场显示的实验结果表明不定源喷嘴在射流的剪切层引入了蘑菇形反向旋转的涡对。这些涡的矢量方向与射流方向相同或相反,被称为流向涡(streamwise vortex)。由于射流中存在开尔文一亥姆霍兹不稳定,每当一个横向涡(spanwisevortex,即涡的矢量方向与射流方向垂直)从喷嘴脱流时会产生瞬时的低压,该瞬时低压促使向内发展的流向涡对在喷嘴的凹槽处生成。这些涡对在向下游流动的过程中会重组并在喷嘴的尖峰面生成向外发展的涡对。这些流向涡极大地影响了射流的发展。流向涡与横向涡的相互作用促使射流更早地发展成为湍流。由于流向涡同时也在射流中引入了径向的剪切流动,因此导致了更多的湍流生成从而增强了射流与周围流体的混合。  相似文献   

7.
An inclined turbulent jet discharging a passive scalar into a turbulent crossflow is investigated under conditions of favorable, zero and adverse streamwise pressure gradient. Experiments are conducted in water by means of magnetic resonance velocimetry and magnetic resonance concentration measurements. The velocity ratio and density ratio are equal to one for all cases. The flow configuration is relevant to film cooling technology, the molecular properties of the fluid being immaterial in the fully turbulent regime. Under favorable pressure gradient (FPG), the streamwise acceleration tilts the jet trajectory toward the wall, which would be beneficial for the film cooling performance. However, the counter-rotating vortex pair is strengthened in the accelerating flow by streamwise stretching. Also, the crossflow boundary layer is significantly thickened by increasingly adverse pressure gradient, which affects the mass transfer from the jet. Overall, the more intense counter-rotating vortices and the thinner boundary layer associated with increasingly FPG enhance the scalar dispersion into the main flow, hampering the film cooling performance in terms of surface effectiveness.  相似文献   

8.
This computational study examines the unsteady cross-stream vorticity structures that form when one or more streamwise vortices are immersed in homogeneous and boundary-layer shear flows. A quasi-two-dimensional limit is considered in which the velocity and vorticity fields, while still possessing three nonzero components, have vanishing gradient in the streamwise direction. This idealization is suitable to applications such as streamwise vortices that occur along a ship hull or airplane fuselage and it can be used as an idealized representation of the quasi-streamwise vortices in the near-wall region of a turbulent boundary layer. In this quasi-two-dimensional idealization, the streamwise velocity has no effect on the cross-stream velocity associated with the vortex. However, the vortex acts to modify the cross-stream vorticity component, resulting in regions of the flow with strong deviations in streamwise velocity. This paper examines the complex structures that form as the cross-stream vorticity field is wrapped up by the vortex and the effect of these structures on the streamwise velocity field, first for vortices immersed in homogeneous shear flow and then for vortices immersed in a boundary layer along a flat wall. Received 2 January 2002 and accepted 13 August 2002 Published online 3 December 2002 RID="*" ID="*" This project was supported by the Office of Naval Research under Grant Number N00014-01-1-0015. Dr. Thomas Swain is the program manager. Communicated by T.B. Gatski  相似文献   

9.
Large-scale vortical structures and associated mixing in methane/air swirling coaxial jets are actively controlled by manipulating the outer shear layer of the outer swirling coaxial jet with miniature flap actuators. In order to investigate the control mechanisms, stereoscopic particle image verocimetry (stereo-PIV) and plannar laser-induced fluorescence (PLIF) techniques are employed. It is found that intense vortex rings are produced in the outer shear layer in phase with the periodic flap motion regardless of the swirl number examined. The vortical structures in the inner shear layer, however, are strongly dependent on the swirl rate. This is because the central methane jet is accelerated by the negative axial pressure gradient, of which strength is determined by the swirl. As a result, the inner vortex formation is significantly suppressed at a higher swirl rate. On the other hand, at a relatively low swirl rate, the inner vortices are shed continuously and the methane jet is pinched off. This particular mode promotes the mixing of methane and air, so that the flammable mixture can be formed at an earlier stage of the jet flow development. In addition, the evolution of secondary streamwise vortices is prompted by the combination of the periodic vortex ring shedding and the swirl. They also contribute to the mixing enhancement in the downstream region.  相似文献   

10.
The prediction of bypass transition remains an important problem in many engineering applications. This is largely because there is no suitable theoretical model for bypass transition and predictions are made using empirical models. This paper presents numerical results for the receptivity of a zero pressure gradient boundary layer subjected to simple freestream waveforms which are the constituent parts of a turbulent flow field. Significant receptivities are only obtained for a minority of freestream waveforms and these lead to two types of flow structure in the boundary layer. The first type of flow structure is essentially two dimensional in nature and consists of two rows of counter-rotating spanwise vortices and is induced by freestream waves of large normal and spanwise wavelength and streamwise wavelengths approximately equal to the boundary layer thickness. The second type of flow structure are the streamwise streaks frequently observed in flow visualisation experiments. These streaks are induced by freestream waves of long streamwise and normal wavelength and spanwise wavelengths in the range of 14.5-46 θ (1.7-5.4δ). The freestream waves can be formed of velocity components in any direction, however the boundary layer is most receptive to fluctuations that lie in a plane perpendicular to the streamwise direction. The overall receptivity to a full spectrum of waves typical of freestream turbulence is considered and is shown to have similar characteristics to those from experiments.  相似文献   

11.
Non-reacting experiments and numerical simulations have been performed to investigate the mixing characteristics in a supersonic combustor with gaseous fuel injection upstream of a flameholding cavity in a supersonic vitiated air flow with stream Mach number 1.7. Using helium as simulated fuel, the acetone vapor is adulterated into the fuel jet. The fuel distribution in spanwise and streamwise direction is imaged by the planar laser-induced fluorescence (PLIF) measurement. According to the similarity of experimental observations with different cavities, the typical L/D = 7 cavity with aft wall angle 45° is chosen and the flowfield with the injection is calculated by Large Eddy Simulation. Experimental and numerical results have shown that most of the fuel flow away upon the open cavity with the lifting counter-rotating vortex structures induced by the transverse jet. Only a small portion of the fuel is convected into the cavity shear layer by the vortex interaction of the jet with cavity shear layer, and then transported into the cavity due to the cavity shear layer motion and the interaction of the shear layer with the cavity trailing edge.  相似文献   

12.
Formation and evolution of secondary streamwise vortices in the compressible transitional boundary layers over a flat plate are studied using a direct numerical simulation method with high-order accuracy and highly effective non-reflecting characteristic boundary conditions. Generation and development processes of the secondary streamwise vortices in the complicated transitional boundary flow are clearly analyzed based on the of numerical results, and the effects on the formation of the ring-like vortex that is vital to the boundary layer transition are explored. A new mechanism forming the ring-like vortex through the mutual effect of the primary and secondary streamwise vortices is expressed.  相似文献   

13.
Compressible subsonic turbulent starting jet with a relatively large Reynolds number of significant practical importance is investigated using large eddy simulation (LES), starting from a smooth contraction nozzle. The computational domain of truncated conical shape is determined through the comparison of the time-averaged numerical solution with the particle imaging velocimetry measurements for the steady jet. It is shown that the starting jet consists of a leading vortex ring followed by a quasi-steady jet, and the instantaneous velocity field exhibits contraction and expansion zones, corresponding to the high pressure (HP) and low pressure (LP) regions formed by the convecting vortex rings, and are related to the Kelvin-Helmholtz instability. The thin boundary layer inside the smooth contraction nozzle evolves into a shear layer at the nozzle exit and develops with the downstream penetration of the jet. Using λ 2 criterion, the formation and evolution of the vortical structures are temporally visualized, illustrating distortion of vortex rings into lobed shapes prior to break-down. Rib-shape streamwise vortex filaments exist in the braid region between a pair of consecutive vortex rings due to secondary instabilities. Finally, formation and dynamics of hairpin vortices in the shear layer is identified.  相似文献   

14.
We compare two turbulent boundary layers produced in a low-speed water channel experiment. Both are subjected to an identical streamwise pressure gradient generated via a lateral contraction of the channel, and an additional spanwise pressure gradient is imposed on one of the layers by curving the contraction walls. Despite a relatively high streamwise acceleration, hot-film probe measurements of the mean-velocity distributions show that the Reynolds number increases whilst the coefficient of friction decreases downstream. Visualization of the viscous layers using hydrogen bubbles reveal an increase in the non-dimensional streak spacing in response to the acceleration. Changes in statistical moments of the streamwise velocity near the wall suggest an increased dominance of high-velocity fluctuations. The near-wall streaks and velocity statistics have little sensitivity to the boundary layer three-dimensionality induced by the spanwise pressure gradient, with the boundary-layer crossflow velocity reaching 11 % that of the local freestream velocity.  相似文献   

15.
The dual-jet flow generated by a plane wall jet and a parallel offset jet at an offset ratio of d/w = 1.0 has been investigated using Particle Image Velocimetry (PIV). The particle images are captured, processed, and subsequently used to characterize the flow in terms of the 2D velocity and vorticity distributions. Statistical characteristics of the flow are obtained through ensemble averaging of 360 instantaneous velocity fields. Also presented is a time series of instantaneous flow fields to illustrate the dynamic interaction between the two jets. Results reveal that the near field of the flow is characterized by a periodic large-scale Karman-like vortex shedding similar to what would be expected in the wake of a bluff body. The existence of the Karman-like vortices results in periodic interactions between the two jets; in addition, these vortices produce noticeable impact on the jet outer layers, i.e., the free shear layer of the offset jet and the wall boundary layer of the wall jet. A schematic of vortex/shear layer interaction is proposed to illustrate the flow pattern.  相似文献   

16.
迎风通量差分分裂法作为一种高效率的数值方法,已被广泛地用于模拟各种复杂流场,但用这类方法模拟有边界层存在的超音速粘性流场时,必须保证通量差分分裂为守恒的;否则,将在边界层内引入一个可观的虚假人工扩散项和压力梯度项,歪曲了边界层特性。本文就这个问题进行理论和数值的研究。  相似文献   

17.
迎风通量差分分裂法作为一种高效率的数值方法,已被广泛地用于模拟各种复杂流场,但用这类方法模拟有边界层存在的超音速粘性流场时,必须保证通量差分分裂为守恒的;否则,将在边界层内引入一个可观的虚假人工扩散项和压力梯度项,歪曲了边界层特性。本文就这个问题进行理论和数值的研究。  相似文献   

18.
运用数值方法,模拟出展向分布的同向倾斜微型射流列与平板湍流边界层相互作用形成流向涡列的流场结构,验证了利用其来对湍流边界层进行控制的可能性.随射流间距减小,流向涡列控制作用流向渗透能力增强,但作用区域减小;随射流速度提高,流向涡列控制作用增强,但过大的射流速度反而会导致流向涡列在局部区域内控制作用的下降;随射流俯仰角减小、倾斜角增大,流向涡列初始控制作用增强,但过小的俯仰角、过大的倾斜角会导致流向涡列流向控制区域明显缩小.要保证流向涡列具有较强的湍流边界层控制作用,必须通过合理配置射流列各主要参数,在保证各流向涡具有一定强度的同时,还要确保各流向涡在形成时部分嵌入边界层内部.  相似文献   

19.
An experimental study of the flowfield generated by the interaction of a streamwise vortex having a strong wake-type axial Mach number profile and a two-dimensional oblique shock wave was conducted in a Mach 2.49 flow. The experiments were aimed at investigating the dynamics of supersonic vortex distortion and to study downstream behavior of a streamwise vortex during a strong shock wave/vortex encounter. The experiments involved positioning an oblique shock generator in the form of a two-dimensional wedge downstream of a semi-span, vortex generator wing section so that the wing-tip vortex interacted with the otherwise planar oblique shock wave. Planar laser sheet visualizations of the flowfield indicated an expansion of the vortex core in crossing a spherically blunt-nose shock front. The maximum vortex core diameter occurred at a distance of 12.7 mm downstream of the wedge leading edge where the vortex had a core diameter of more than double its undisturbed value. At distances further downstream the vortex core diameter remained nearly constant, while it appeared to become more diffused at distances far from the wedge leading edge. Measurements of vortex trajectory revealed that the vortex convected in the freestream direction immediately downstream of the bulged-forward shock structure, while it traveled parallel to the wedge surface at distances further downstream. The turbulent distorted vortex structure which formed as a result of the interaction, was found to be sensitive to downstream disturbances in a manner consistent with incompressible vortex breakdown. Physical arguments are presented to relate behavior of streamwise vortices during oblique and normal shock wave interactions. Received 7 September 1996 / Accepted 10 February 1998  相似文献   

20.
Görtler vortices develop along concave walls as a result of the imbalance between the centrifugal force and radial pressure gradient. In this study, we introduce a simple control strategy aimed at reducing the growth rate of Görtler vortices by locally modifying the surface geometry in spanwise and streamwise directions. Such wall deformations are accounted in the boundary region equations by using a Prandtl transform of dependent and independent variables. The vortex energy is then controlled via a classical proportional control algorithm for which either the wall-normal velocity or the wall shear stress serves as the control variable. Our numerical results indicate that the control algorithm is quite effective in minimizing the wall shear stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号