首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present a simple model for the possible mechanism of appearance of attraction between like charged polyions inside a polyelectrolyte solution. The attraction is found to be short ranged, and exists only in the presence of multivalent counterions. It is produced by the correlations in layers of condensed counterions surrounding each polyion and is only weakly temperature dependent. We find the attraction to be maximum at zero temperature and dimish as the temperature is raised. The attraction is only possible if the number of condensed counterions exceeds the threshold, , where is the valence of counterions and Z is the polyion charge. Received 10 March 1999 and Received in final form 20 April 1999  相似文献   

2.
Single- and double-stranded DNA and many biological and synthetic polyelectrolytes undergo two structural transitions upon increasing the concentration of multivalent salt or molecules. First, the expanded-stretched chains in low monovalent salt solutions collapse into nearly neutral compact structures when the density of multivalent salt approaches that of the monomers. With further addition of multivalent salt the chains redissolve acquiring expanded-coiled conformations. We study the redissolution transition using a two-state model (F.J. Solis, M. Olvera de la Cruz, J. Chem. Phys. 112, 2030 (2000)). The redissolution occurs when there is a high degree of screening of the electrostatic interactions between monomers, thus reducing the energy of the expanded state. The transition is determined by the chemical potential of the multivalent ions in the solution, μ and the inverse screening length, κ. The transition point also depends on the charge distribution along the chain but is nearly independent of the molecular weight and degree of flexibility of the polyelectrolytes. We generate a diagram of μversusκ2 where we find two regions of expanded conformations, one with charged chains and the other with overcharged (inverted charge) chains, separated by a collapsed nearly neutral conformation region. The collapse and redissolution transitions occur when the trajectory of the properties of the salt crosses the boundaries between these regions. We find that in most cases the redissolution occurs within the same expanded branch from which the chain precipitates. Received 15 May 2000 and Received in final form 28 June 2000  相似文献   

3.
Studies performed on strong polyelectrolytes and on a weak polyelectrolyte, sodium poly(acrylate), show that their stability in presence of multivalent cations depends on the chemical nature of the charged side groups of the polymer. For sulfonate groups (SO3 -) or sulfate groups (OSO3 -) phase separation generally occurs in presence of inorganic cations of valency 3 (as La3+) or larger and a resolubilization takes place at high salt concentration. The interactions of the polyelectrolyte with multivalent cations are of electrostatic origin and the phase diagrams are weakly dependent on the chemical nature of the polymer backbone and on the specificity of the counterions. For acrylate groups, (COO-), the phase separation was observed with inorganic cations of valency 2 (as Ca2+) or larger without resolubilization at high salt concentration. The phase separation is due to a chemical association between cations and acrylate groups of two neighboring monomers of the same chain. This chemical association creates a hydrophobic complex by dehydrating both monomer and cation. With organic trivalent cation, as spermidine +H3N(CH2)4NH2 +(CH2)3NH3 +, where no chemical association occurs with the charged side groups COO- or SO3 - of the polyelectrolyte, similar phase diagrams were observed whatever was the polyelectrolyte with a resolubilization at high trivalent cation concentration. Received 3 March 1999 and Received in final form 2 September 1999  相似文献   

4.
Aqueous micellar solutions of ionic/neutral block copolymers have been studied by light scattering, small angle neutron scattering and small angle X-ray scattering. We made use of a polymer comprised of a short hydrophobic block (polyethylene-propylene) PEP and of a long polyelectrolytic block (polystyrene-sulfonate) PSSNa which has been shown previously to micellize in water. The apparent polydispersity of these micelles is studied in detail, showing the existence of a few large aggregates coexisting with the population of micelles. Solutions of micelles are found to order above some threshold in polymer concentration. The order is liquid-like, as demonstrated by the evolution with concentration of the peak observed in the structure factor (), and the degree of order is found to be identical over a large range of concentrations (up to 20 wt%). Consistent values of the aggregation number of the micelles are found by independent methods. The effect of salt addition on the order is found to be weak. Received: 19 June 1997 / Received in final form: 4 September 1997 / Accepted: 9 October 1997  相似文献   

5.
Small angle X-ray and neutron scattering data on an effective three-component lamellar phase composed of water, a non adsorbing water-soluble polymer (polyvynilpyrolidone), fluid membranes, made from a mixture of a cationic surfactant (cetylpiridiumchloride) and a cosurfactant (hexanol), are presented for various membrane as well as polymer concentrations. The data are fitted with a recently proposed model which takes into account the geometry and the fluctuations of these periodic structures. This allows a quantitative study of the polymer contribution to the smectic compression modulus of the lamellar phase. Four different regimes of polymer confinement are expected. The associated variations in are compared to a recent theoretical model, which predicts the polymer-mediated contribution to the smectic compression modulus. Received 20 January 1998  相似文献   

6.
We investigate polyelectrolyte brushes using both scaling arguments and molecular dynamics simulations. As a main result, we find a novel collapsed brush phase. In this phase, the height of the brush results from a competition between steric repulsion between ions and monomers and an attractive force due to electrostatic correlations. As a result, the monomer density inside the brush is independent of the grafting density and the polymerization index. For small ionic and monomer radii (or for large Bjerrum length) the brush undergoes a first-order phase transition from the osmotic into the collapsed state. Received 26 September 2000  相似文献   

7.
We present simulation results for a model polymer melt, consisting of short, nonentangled chains, in the supercooled state. The analysis focuses on the monomer dynamics, which is monitored by the incoherent intermediate scattering function. The scattering function is recorded over six decades in time and for many different wave-vectors which range from the size of a chain to about three times the maximum position of the static structure factor. The lowest temperatures studied are slightly above , the critical temperature of mode-coupling theory (MCT), where was determined from a quantitative analysis of the - and -relaxations. We find evidence for the space-time factorization theorem in the -relaxation regime, and for the time-temperature superposition principle in the -regime, if the temperature is not too close to . The wave-vector (q-) dependence of the nonergodicity parameter, of the critical amplitude, and the -relaxation time are in qualitative agreement with calculations for hard spheres. For q larger than the maximum of the structure factor the -relaxation time already agrees fairly well with the asymptotic MCT-prediction . The behavior of the relaxation time at small q can be rationalized by the validity of the Gaussian approximation and the value of the Kohlrausch stretching exponent, as suggested in neutron-scattering experiments. Received 30 October 1998  相似文献   

8.
Charged monolayers at a liquid-vapor interface may be found in a crystalline state, resulting in a surface density of charge that displays periodic modulations. In this paper we discuss how these modulations affect different thermodynamical and mechanical properties (compared with the equivalent uniform charge density) of a system consisting of the charged monolayer and a bulk solution including a finite concentration of counter-ions and co-ions. It is shown that very accurate results for low and moderate salt concentrations are possible within an expansion in the Fourier modes of the modulations, the Weak Amplitude Perturbation (WAP), if the finite size of the ions are included as a Stern layer. We conclude by discussing the implications and the relevance of these results for both theoretical studies and experiments.  相似文献   

9.
We present here a theoretical study of kinetics of phase separation within a mixture made of two chemically incompatible ramified polymers. For simplicity, we assume that they have the same topology. We are interested in the variation of the relaxation rate, q, versus the wave number q, in the vicinity of the spinodal temperature. The kinetics is governed by local (Rouse) and reptation motions (faster and slower modes). For qRG 1 (RG being the gyration radius), kinetics is entirely controlled by local motions where each chain moves inside its own tube, and we show that the corresponding characteristic frequency, {-1}q, scales as {-1}q Gq6, where G is a known topological factor. For qRG 1, however, kinetics is rather dominated by long-wavelength (reptation) motions where unlike ramified polymers creep inside a long tube. For this case, we find that {-1}q ( 0 )q2 (c - ), where ( 0 ) is another known topological factor that represents the total mobility of free monomers belonging to connected chains and reticulation points, and c accounts for the critical value of the segregation parameter. Finally, the derived relaxation rate must be compared to that relative to a linear polymer mixture.  相似文献   

10.
In this paper the Martin-Siggia-Rose (MSR) functional integral representation is used for the study of the Langevin dynamics of a polymer melt in terms of collective variables: mass density and response field density. The resulting generating functional (GF) takes into account fluctuations around the random phase approximation (RPA) up to an arbitrary order. The set of equations for the correlation and response functions is derived. It is generally shown that for cases whenever the fluctuation-dissipation theorem (FDT) holds we arrive at equations similar to those derived by Mori-Zwanzig. The case when FDT in the glassy phase is violated is also qualitatively considered and it is shown that this results in a smearing out of the ideal glass transition. The memory kernel is specified for the ideal glass transition as a sum of all “water-melon” diagrams. For the Gaussian chain model the explicit expression for the memory kernel was obtained and discussed in a qualitative link to the mode-coupling equation. Received: 9 January 1998 / Revised: 24 April 1998 / Accepted: 2 July 1998  相似文献   

11.
Conformational properties of comb-like polymers strongly adsorbed on a flat solid surface were investigated using computer simulation and scanning force microscopy. The computer simulation showed that the macromolecules with asymmetric distribution of the side chains relatively to the backbone are effectively in a collapsed state even under conditions of a good solvent. They formed peculiar helical superstructures which could be observed by scanning force microscopy of cylindrical brushes of polymethylmethacrylate on mica. Received 13 September 1999  相似文献   

12.
Small-angle neutron scattering (SANS) has been employed for the analysis of conformations of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g -PEG) molecular bottle brushes in aqueous solutions. The degree of polymerisation of the PEG chains was systematically varied in order to unravel dependence of the conformational properties of the bottle brushes on the molecular weight of the grafted chains. The grafting density was kept constant and high enough to ensure strong overlap of the PEG chains. The scattering spectra were fitted on the basis of the model of an effective worm-like chain with the account of average radial distribution and local fluctuations of the PEG density in the bottle brush. The results of the fits indicate that molecular brushes retain weakly bent configuration on the length scale of the order of (or larger than) the brush thickness. This finding is in agreement with earlier simulation and recent theoretical results.  相似文献   

13.
We formulate the exact non-linear field theory for a fluctuating counter-ion distribution in the presence of a fixed, arbitrary charge distribution. The Poisson-Boltzmann equation is obtained as the saddle-point of the field-theoretic action, and the effects of counter-ion fluctuations are included by a loop-wise expansion around this saddle point. The Poisson equation is obeyed at each order in this loop expansion. We explicitly give the expansion of the Gibbs potential up to two loops. We then apply our field-theoretic formalism to the case of a single impenetrable wall with counter ions only (in the absence of salt ions). We obtain the fluctuation corrections to the electrostatic potential and the counter-ion density to one-loop order without further approximations. The relative importance of fluctuation corrections is controlled by a single parameter, which is proportional to the cube of the counter-ion valency and to the surface charge density. The effective interactions and correlation functions between charged particles close to the charged wall are obtained on the one-loop level. Received 8 February 1999 and Received in final form 15 May 1999  相似文献   

14.
After a brief review of the scaling concepts for static and dynamic properties of polymer brushes in good solvents and Theta solvents, the Monte Carlo evidence is discussed. It is shown that under typical conditions the diameter of the last blob is of the order of 10-20% of the brush height, and therefore pronounced deviations from the self-consistent field predictions occur. In bad solvents, lateral microphase separation occurs leading to an irregular pattern of “dimples”. Particularly interesting is the response of brushes to shear deformation, and the interaction between two interpenetrating brushes. Recent attempts to understand the resulting shear forces via molecular-dynamics simulations are briefly described, and an outlook on related experiments is given. Dedicated to Prof. H.E. Stanley on the occasion of his 60th birthday Received 11 March 2002 and Received in final form 3 June 2002  相似文献   

15.
Nematic ordering in anisotropic non-Gaussian elastomers is considered theoretically using mean field approximation. We focus on the effect of anisotropy during network cross-linking on the system elasticity and, in particular, on the so-called soft deformation mode. As the main result, we calculate the dependence of the elastomer free energy on the angle between the axis of “frozen” anisotropy and the nematic director. The dependence of the isotropic-nematic transition point on the orientational field acting on the monomers during the cross-linking process is also calculated. Received: 5 November 1997 / Revised and Accepted: 29 June 1998  相似文献   

16.
The effect of excluded-volume interactions on the reptation dynamics of long polymer chains is considered theoretically. It is shown that interactions give rise to an exponential increase of the reptation time, , if polymer chains are long enough: , where is the number of monomers per entanglement. We propose a novel dynamical mechanism of activated reptation implying that neighboring chains exchange conformations of their terminal fragments. It is shown that the exchange mechanism is compatible with the equilibrium polymer chain statistics and that it provides a bridge between the previous theories. Received: 25 July 1997 / Accepted: 8 October 1997  相似文献   

17.
We investigate numerically, using the bond-fluctuation model, the adsorption of many random AB-copolymers with excluded volume interactions at the interface between two solvents. We find two regimes, controlled by the total number of polymers. In the first (dilute) regime, the copolymers near the interface extend parallel to it, while in the second regime they extend perpendicular to it. The density at the interface and the density in the bulk depend differently on the total number of copolymers: In the first regime the density at the interface increases more rapidly than in the bulk, whereas the opposite is true in the second regime. Received 4 March 1998 and Received in final form 22 September 1998  相似文献   

18.
The compressibility modulus of a lamellar phase containing a neutral polymer guest molecule was measured directly using a surface force apparatus. The system studied consisted of sodium dodecyl sulphate (SDS), pentanol, water and polyethylene glycol (PEG) . The lamellar phase was induced from a micellar phase in situ via a confinement induced isotropic to lamellar phase transition. This avoided problems resulting from the viscosity and turbidity normally characteristic of these lamellar phase samples. Increasing the amount of PEG resulted in a marked decrease in the layer compressibility modulus indicating a decrease in the repulsive forces between the lamellae. The origin of such a phenomenon is discussed in terms of different mechanisms including depletion interactions, bridging interactions and modification of the electrostatic interaction between the lamellae by the polymer. Received 2 February 1998  相似文献   

19.
This paper resumes light scattering investigations of saltfree aqueous solutions of two component mixtures of charged spheres by extending those measurements to systems in which one component is replaced by essentially stiff rodlike particles. In a second step of investigations these were replaced by linear flexible particles. Fd-virus particles (length l=883 nm) or macromolecules of NaPSS of four different contour lengths have been used as representatives. Mostly the concentration of latex spheres was fixed at 0.02 Vol%. The concentration of the other component was varied over a wide range. Concerning the scattering intensity, the contribution of the latex spheres dominates, in particular in the systems containing NaPSS particles. This simplifies the interpretation of data considerably. A rearrangement of the spheres is observed, depending on the shape of the other sort of particles. These conclusions can be drawn from the shift of measured static structure factor with concentration c. A power law is found for the q-value of the maximum. The exponent depends on the properties of the second component. For the lower molecular weight (MW) samples of NaPSS below a critical concentration, the exponent is smaller than 1/3, decreasing the more the smaller the MW of the samples is. A tentative explanation in terms of charge number of NaPSS particles is given. The short time dynamics has been explored too. From the data a “dynamically determined structure factor” can be derived, that can be compared with the measured static structure factor. Good (fd) and fair (NaPSS) agreement is obtained respectively. Only at small wavenumbers below the maximum of deviations occur which increase with concentration; they are consistent with hydrodynamic interaction. Received 30 July 1998 and Received in final form 14 December 1998  相似文献   

20.
In a SANS experiment, we have directly determined for the first time the conformation of hyaluronan, a model semirigid polyelectrolyte. At high ionic strength, this is completely possible, where the scattered intensity crosses over (when decreasing q) from a q(-1) rod variation to a q(-2) and, where fitting to the "wormlike" chain model gives the backbone, intrinsic, persistence length: L0 = 86.5 A. At low ionic strength, we can safely check that the measured persistence length appears increased by at least the amount predicted by Odijk for the electrostatic contribution, L(e) (approximately kappa(-2), square of the Debye screening length). However, the intensity at the lowest q is not only due to the single chain, since it crosses over from a q(-1) to a q(-4) variation, characteristic of polymer associations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号