首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The counterion binding behaviour of micelles of sodium dodecyl sulphate (SDS) and several bile salts in the pure state have been studied, as well as in mutually mixed states, and in a mixed state with polyoxyethylene sorbitan monolaurate (PSML) as a nonionic surfactant. Electrochemical measurements have shown no counterion binding by the pure bile salt micelles and their mixtures with PSML; they can bind counterions when mixed with SDS, whereas the surfactant anions of SDS micelles bind counterions in the pure state and/or in mixed states with PSML. In the SDS-PSML and SDS-bile salts combinations, the counterion association is decreased by the increased proportions of the second component. The extent of counterion binding by the different systems is presented.  相似文献   

2.
Solubilization of cholesterol by mixed micelles of sodium chenodeoxycholate with sodium ursodeoxycholate was investigated in carbonate-tetraborate buffer (Kolthoff) solution at pH 10 and 37°C. It was found that the mixing of the two bile salts gives a negatively synergetic effect on solubilization of cholesterol. The solubilizing power of bile salts for cholesterol was remarkably influenced with the change in mole fraction of sodium ursodeoxycholate (X UDC).The behavior of bile salt solutions saturated with cholesterol was examined by measuring the surface tension. Two break points were observed in the curves of surface tension vs. concentration. The break points seem to correspond to a CMC in the absence of solubilized cholesterol and another CMC in the presence of solubilized cholesterol inside bile salt micelle.  相似文献   

3.
Two β-cyclodextrin derivatives bearing appended quinolyl and isoquinolyl arms,i.e.mono-(6-quinolyl- 6-deoxy)-β-cyclodextrin(1) and mono-(6-isoquinolyl-6-deoxy)-β-cyclodextrin(2) were synthesized in satisfactory yields and fully characterized.Their original conformations and binding behaviors toward four bile salt guests,that is,sodium cholate(CA),sodium deoxycholate(DCA),sodium glycocholate (GCA),and sodium taurocholate(TCA),were investigated by means of fluorescence,circular dichroism and 2D NMR spectroscopy.The study of solution structures revealed that both quinolyl and isoquinolyl arms were located outside the cyclodextrin cavity.The results obtained from the fluorescence titrations showed that the binding abilities of hosts 1 and 2 with selected bile salts varied in an order of DCA > CA > GCA.The selective binding of hosts toward bile salt guests was discussed from the viewpoints of induced-fit and multiple binding.  相似文献   

4.
The effect of different hydrotropic salts on the microenvironment at the anionic head group region of sodium dodecyl sulphate (SDS) micelle has been studied through time-resolved fluorescence anisotropy measurements of a solubilized probe, coumarin-153 (C153). The organic cations of the hydrotropic salts used in this study, i.e. aniline hydrochloride (AHC) and o-, m- and p-toluidine hydrochlorides (OTHC, MTHC and PTHC, respectively), differ in their charge to size ratio and hydrophobicity. Present study utilizes the sensitivity of the fluorescence technique to understand the changes in the micropolarity and microviscosity experienced by the fluorescent probe, C153, solubilized in the micellar Stern layer, on addition of different hydrotropic salts. Significant changes are observed in the rotational relaxation dynamics of the probe with increasing concentration of the salts. The changes in the rotational relaxation dynamics clearly reflect the sphere to rod transition in the SDS micelles and correspond nicely with the reported results from dynamic light scattering measurements. The growth behavior of SDS micelles is found to be sensitive to the hydrophobicity of the organic cations. The charge to size ratio of the organic cations also indicated to play a role in inducing the sphere to rod transition in the SDS micelles. The interesting observation made from this study is that the sphere to rod transition of SDS micelles is largely facilitated by the presence of the hydrotropic salts and such a transition is successfully indicated by the simple fluorescence anisotropy measurements of a probe in the micelle carried out in the presence of different hydrotropic salts.  相似文献   

5.
The molten globule (MG) state or the A-state of cytochrome c (cyt c) has been induced by addition of salts sodium perchlorate (NaClO4), sodium thiocyanate (NaSCN), and sodium sulphate (Na2SO4) at pH 2.0. Isothermal titration calorimetry (ITC) has been used for determining the energetics of binding of 8-anilino naphthalene sulphonate (ANS) to the salt induced A-state of cyt c, and the accompanying thermodynamic parameters have been analyzed to elucidate the nature of the interactions between ANS and the A-state of cyt c. Temperature dependent studies of the binding process reveal that the binding is not a two state process and there are more than a single type of interactions involved. Addition of a bulky salt tetraethylammonium bromide (TEAB) increases the stoichiometry of binding significantly, with a reduction in the binding affinity at a higher concentration. The results provide quantitative information on the binding of ANS to the salt induced molten globule states of cyt c. It is further inferred that the binding involves a combination of hydrophobic and electrostatic interactions.  相似文献   

6.
Effects of two bile salts, namely sodium deoxycholate (NaDC) and sodium cholate (NaC), on DPPC small unilamellar vesicles have been investigated using the steady-state fluorescence anisotropy (r ss ) of diphenylhexatriene (DPH) as a tool. It was found that the variation of r ss is sensitive enough to monitor different stages of interaction of bile salts with DPPC vesicles. NaDC induced significant changes in the membrane well below its CMC (6 mM). Even at 4 mM, which is still lower than the CMC, the phospholipids were completely solubilised by the NaDC micelles. The effect of NaC on DPPC vesicles, however, was much less significant, especially in the sub-micellar concentration regime. Being more hydrophilic NaC does not interact with the membrane efficiently. Complete solubilisation of phospholipids took place only when the concentration of NaC was above its CMC (16 mM). The experiments also showed that the bile salt-induced changes of vesicle structure were strongly dependent on the concentration of the bile salt and not on the molar ratio of lipid and bile salt.  相似文献   

7.
The effects of inorganic salts, NaCl, NaBr, NaI, Na2SO4, KCl, KBr, KI, on the binding constants (Ks) of psychotropic phenothiazine drugs, triflupromazine (TFZ) and chlorpromazine, to bovine serum albumin (BSA) were examined by using second-derivative spectrophotometry. All of the salts examined, with the exception of Na2SO4, decreased the K values significantly, depending on the concentration of the salt, e.g., the decrease in the K values of both drugs were about 40% for 0.1 M NaCl. The results obtained with Na2SO4 indicated that neither Na+ nor SO4(2-) had any affect on the binding of the phenothiazines to BSA. Based on the Na2SO4 results and the finding that the effect of each potassium salt on binding was quite similar to that of the corresponding sodium salt, the effects of these halogen salts can be considered to be derived from their anions, although the phenothiazines are positively charged at pH 7.4. The effectiveness of the anions was determined to occur in the following order: I->Br->Cl-; these results coincided with the published order of the binding affinity of these anions to albumin. The 19F-NMR spectra of TFZ in the presence of each of these halogen salts revealed a concentration-dependent decrease in the intensity of the signal at 13.8 ppm that had previously been assigned to the TFZ bound to Site II. Consequently, the effects of these anions on the binding of positively charged phenothiazine drugs are thought to be local steric effects caused by the binding of these anions to Site II.  相似文献   

8.
Flotation of soluble salts with dodecyl amine hydrochloride (DAH) and sodium dodecyl sulfate (SDS) collectors has demonstrated that the interfacial water structure and hydration states of soluble salt surfaces together with the precipitation tendency of the corresponding collector salts are of considerable importance in explaining their flotation behavior. In particular, the high concentration of ions in these soluble salt brines and their hydration appear to modify the bulk and interfacial structure of water as revealed by contact angle measurements and this effect is shown to be an important feature in the flotation chemistry of soluble salt minerals including alkali halide and alkali oxyanion salts. Depending on characteristic chemical features (salt type), the salt can serve either as a structure maker, in which intermolecular hydrogen bonding between water molecules is facilitated, or as a structure breaker, in which intermolecular hydrogen bonding between water molecules is disrupted. For structure making salts the brine completely wets the salt surface and no contact angle can be measured. For structure breaking salts the brine does not completely wet the salt surface and a finite contact angle is measured. In this regard it has been found that soluble salt flotation either with the cationic DAH or anionic SDS collector is possible only if the salt is a structure breaker. Copyright 2001 Academic Press.  相似文献   

9.
Partial molar volumes for a homologous series of amino acids and peptides have been measured in aqueous 1M sodium acetate, sodium thiocyanate, and sodium sulfate at 25°C. These data have been utilized in conjunction with the data in water to deduce partial molar volumes of transfer V 2,m 0(tr) from water to these aqueous salt solutions. The volumes of transfer for the amino acids and peptides are found to be positive. The interpretation is that this result arises from the dominant interaction of the sodium salts with the charged centers of amino acids and peptides. Thermal denaturation of the structurally homologous proteins lysozyme and -lactalbumin has been studied in the presence of these salts. Significant thermal stabilization of hen egg-white lysozyme has been observed in the presence of sodium acetate and sodium sulfate. However, the thermal stabilization observed for -lactalbumin is very small in the presence of these salts and sodium thiocyanate leads to a lowering of its thermal denaturation temperature. The rise in the surface tension of aqueous salt solutions with salt concentration has been correlated with the calorimetric and volumetric measurements. The results show that V 2,m 0(tr) depends less on the type of electrolyte than on the ionic strength of the solution. The V 2,m 0(tr) values correlate very well with the increase in the surface tension of aqueous salt solutions, indicating significant role of surface tension in interactions of amino acids, peptides, or protein with the salts.  相似文献   

10.
Two novel permethylated beta-cyclodextrin (PM-beta-CD) derivatives, i.e., 6I-O-(1-naphtholxy)-2I,31-di-O-methylhexakis(2II-VII,3II-VII,6II-VII-tri-O-methyl)-beta-cyclodextrin (1) and 6I-O-(8-hydroxyquinoline)-2I,31-di-O-methylhexakis(2II-VII,3II-VII,6II-VII- tri-O-methyl)-beta-cyclodextrin (2), were synthesized in satisfactory yields, and their inclusion modes, complex-induced fluorescent behaviors, binding ability, and selectivity for bile salts of biological relevance (cholic acid sodium salt, CA; deoxycholic acid sodium salt, DCA; glycochoic acid sodium salt, GCA; taurocholic acid sodium salt, TCA) were investigated by the circular dichroism, 2D NMR, steady-state, and time-resolved fluorescent spectra. The results obtained from induced circular dichroism and ROESY spectra show that the chromophore groups of 1 and 2 reside in the central cavity of PM-beta-CD, and are expelled to the region of narrow torus rim upon complexation with bile guests, which presents the binding mode of cooperative inclusion. The transfer of the chromophore groups from the central cavity to the more hydrophobic torus rim leads to the remarkable increase of fluorescent intensities and longer fluorescent lifetimes of hosts 1 and 2 upon gradual addition of bile salts, which is importantly distinct from the molecular recognition of the chromophore-modified beta-CD species with bile salts. Interestingly, hosts 1 and 2 present much stronger binding ability for bile guests than PM-beta-CD. Differing from native beta-CD, all the PM-beta-CDs are more prone to include bile salts with longer tails, such as GCA and TCA. Their corresponding binding ability and molecular selectivity are closely discussed from the viewpoints of difference of cavity size/shape between beta-CD and PM-beta-CD, effect of substituent groups, and structures of bile guests, respectively.  相似文献   

11.
南海军  刘忠芳  刘绍璞 《化学学报》2006,64(12):1253-1259
研究了牛磺胆酸钠、甘牛胆酸钠、胆酸钠和脱氧胆酸钠等四种胆酸盐在酸性介质中的聚集作用对共振瑞利散射光谱的影响及其分析应用. 结果表明: 在一定浓度的HCl, H2SO4或HNO3溶液中, 四种胆酸盐均能自聚集形成粒径增大的聚集体. 该聚集体能导致溶液RRS显著增强, 并产生了新的RRS光谱. 不同胆酸盐在同种介质中的反应产物具有相似的光谱特征, 最大RRS波长分别位于349 (HNO3介质), 359 (H2SO4介质)和369 nm (HCl介质). 在一定范围内, 胆酸盐的浓度与散射强度(ΔIRRS)成正比. 对于不同的体系其检出限在12.0~21.8 ng/mL之间. 方法灵敏度高, 选择性较好, 而且十分简便快速. 可用于市售蛇胆川贝液和血清样品中胆酸盐的测定.  相似文献   

12.
Interaction of the bile salts, sodium cholate and sodium deoxy cholate with albumin has been probed by fluorescence and circular dichroism studies. Both covalently and non-covalently labeled protein have been used to follow the aggregation of bile salts in presence of protein and to study bile salt-protein interactions in general. Time resolved studies, in agreement with steady-state fluorescence and circular dichroism studies, indicate alteration of protein secondary structure due to positive co-operative effects in bile salt binding to protein. These studies also indicate that covalent labeling may not always be good for studying proteins as it causes alteration of protein secondary structure.  相似文献   

13.
The structure of sodium deoxycholate (NaDC) micellar aggregates has been previously reported to be helical, and two helical models have been proposed for the micellar aggregates of sodium taurodeoxycholate (NaTDC). Here we report NMR and UV-VIS studies on the interaction between acridine orange (AO) and NaDC or NaTDC aqueous micellar solutions. AO is known to aggregate in aqueous solutions. The addition of NaDC or NaTDC causes the breaking of the AO aggregates, although the binding geometry of the two bile salts with AO seems to be slightly different. The cationic dye interacts mainly with the C18 and C,9 methyl groups of the bile salt molecules. This result agrees with one of the two NaTDC helical models and with some of its possible aggregates, and confirms again the helical structure attributed to the NaDC micellar aggregates within the limits of the experimental conditions tested by us.Devoted to Professor Giovannai Battista Marini Bettolo Marconi on the occasion of his 75th birthday.  相似文献   

14.
Summary Capillary electrophoresis has been investigated as a novel experimental method for determination of the aggregation constants of surfactants. The tendency of sodium cholate and sodium taurodeoxycholate to associate was studied in phosphate buffers of pH 8.0 and pH 7.0, respectively. Stepwise aggregation equilibria of bile salt monomers has been described in terms of massbalance equations. The Offord equation was used to model the electrophoretic mobility of the bile salt associates, and the experimental mobility values could be fitted to the model. Interestingly, only even-membered aggregates-dimers and tetramers-besides the monomers were proposed from the results of the curve-fitting for both bile salts. The aggregation constants calculated were (in molar units): cholate logK A2=1.37, logK A4=4.98 taurodeoxycholate logK A2=1.68, logK A4=6.46. From these values, more pronounced aggregation of taurodeoxycholate starting at lower concentrations has been deduced, supporting the back-to-back association model of bile salts.  相似文献   

15.
Poly(N-isopropylacrylamide)-grafted polymer monolith has been achieved using a surface-initiated atom transfer radical polymerization grafting polymerization within the pores of poly(chloromethylstyrene-divinylbenzene) macroporous monolith contained in a 100 mm × 4.6 mm I.D. stainless steel column. The grafted-poly(N-isopropylacrylamide) on the surface of the grafted monolith that was used as chromatographic stationary phase showed a response to the variation of temperatures and/or salt concentrations. This study focus on its salt concentration responsive property and it has been revealed that the hydrophobicity of the grafted monolith can be adjusted by changing salt concentrations in the range of 0.05-2.0 mol/L. A variety of salts including sodium sulfate, ammonium sulfate and sodium chloride exhibited different effects on the alteration of hydrophobicity of the grafted monolith, and the effect of the salts was in the order of sodium sulfate > ammonium sulfate > sodium chloride. Based on this response to salt concentrations, the grafted monolith was applied in hydrophobic interaction chromatography of proteins, and the base-line separation of a six proteins mixture consisting of cytochrome c, myoglobin, ribonuclease A, bovine serum albumin, ovalbumin and thyroglobulin bovine was achieved by a salt gradient elution.  相似文献   

16.
The growth behavior of aggregates formed in aqueous solutions of the anionic surfactant sodium dodecyl sulfate (SDS) in the presence of the cationic hydrophobic salts o-toluidine hydrochloride (OTHC) and m-toluidine hydrochloride (MTHC) has been studied by dynamic light scattering (DLS) and small-angle neutron scattering (SANS) techniques. DLS studies indicate a progressive growth of SDS micelles with addition of less than equimolar concentrations of hydrophobic salts. A prolate ellipsoidal model is used to analyze the DLS data, which is further supported by SANS measurements. We explain the propensity for the strong growth of micelles in the presence of OTHC and MTHC by the high charge neutralization provided by these salts as the aromatic counterions are adsorbed on the surface of the micelles. When the substitution is at the meta position, i.e., for MTHC, micellar growth is favored at lower salt concentrations than for OTHC. The variation in growth behavior is explained in terms of the difference in the chemical environments of the substituents at the ortho and meta positions. Micellar parameters obtained from SANS data at elevated temperature also support enhanced growth of micelles in the presence of MTHC as compared to OTHC.  相似文献   

17.
The influence of two salts as additives namely sodium chloride and sodium sulphate and a nonelectrolyte, 2-butoxyethanol on surface chemical and aggregation characteristics of ionic liquids (IL) of 1-octyl-3-methylimidazolium chloride, [C8mim][Cl], 1-octyl-3-methylimidazolium bromide, [C8mim][Br], and 1-octyl-3-methylimidazolium iodide, [C8mim][I] in aqueous media were monitored through surface tension and small angle neutron scattering measurements. The addition of salts drastically decreased the critical aggregation concentration (CAC) and increased the area per adsorbed IL molecule. The co-ions of salts modify the surface of IL molecules and aggregates through various interactions such as charge neutralization, specific interactions and dehydration The results obtained by analyzing the SANS curves in the whole Q range showed that the oblate ellipsoidal shape of the aggregates of ionic liquids is un-altered upon the addition of additives. However the additives facilitate the growth of the aggregates in to microstructures with cubic packing at high salt concentrations.  相似文献   

18.
The chiral separation of trimetoquinol hydrochloride, which is a bronchodilator (Inolin), and three related compounds by micellar electrokinetic chromatography was investigated using a bile salt as a chiral surfactant. Enantiomers of these compounds, except laudanosoline, were successfully separated within 12 min using a separation tube of effective length 500 mm × 0.05 rum i.d. and a 0.05 M sodium taurodeoxycholate solution of pH 7.0. The observed theoretical plate numbers of the peaks were ca. 150000. Chiral recognition was affected by the structure of bile salts, the pH of the buffer solutions used and the structure of the solutes. Of four kinds of bile salts, successful chiral separation was achieved only using sodium taurodeoxycholate solution under neutral conditions. The method was applied to the optical purity determination of trimetoquinol hydrochloride. The effects of surfactant concentrations and some additives to the micellar solution are briefly described.  相似文献   

19.
Aqueous solutions of bile salts, i.e. sodium cholate (NaC), sodium deoxycholate (NaDC), and sodium taurocholate (NaTC), are characterized and evaluated as reversed-phase liquid chromatographic (RPLC) mobile phases. The separation of the ASTM-recommended RPLC test mix in addition to more than 50 other compounds on a C18 column demonstrates the viability of these bile salts as HPLC mobile phases. The Armstrong-Nome theory was applied and found to adequately describe the partitioning behavior of solutes eluted with these bile salts at low surfactant concentrations. The effect of alcohol additives on chromatographic retention and efficiency was also assessed. Not only are the bile salt molecules rigid and chiral, but they form helical micellar aggregates as well. Consequently, many isomeric compounds can be easily resolved with this mobile phase additive. The base-line resolution of some binaphthyl-type enantiomers with a standard C18 column and the bile salt micellar mobile phases is also demonstrated. In addition, these bile salt mobile phases may be preferable to conventional hydroorganic mobile phase systems for the separation of many classes of routine compounds. A brief prospectus on the future utilization of bile salts in liquid chromatography is presented.  相似文献   

20.
Helical and ordered structures have previously been identified by X-ray diffraction analysis in crystals and fibers of bile salts, and proposed as models of the micellar aggregates formed by trimeric or dimeric units of dihydroxy and trihydroxy salts, respectively. These models were supported by the results of studies of micellar bile salt solutions performed with different experimental techniques. The study has now been extended to the gas phase by utilizing electrospray ionization mass spectrometry (ESIMS) to investigate the formation and the composition of aggregates stabilized by noncovalent interactions, including polar (ion-ion, ion-dipole, dipole-dipole, hydrogen bonding etc.) and apolar (van der Waals and repulsive) interactions. The positive and negative ESIMS spectra of sodium glycodeoxycholate (NaGDC), taurodeoxycholate (NaTDC), glycocholate (NaGC), and taurocholate (NaTC) aqueous solutions, recorded under different experimental conditions, show in the first place that aggregates analogous to those present in micellar solutions do also exist in the gas phase. Furthermore, consistently with the condensed-phase model, the positive-ion spectra show that the trimers are the most stable oligomers among the aggregates of dihydroxy salts (NaGDC and NaTDC) whilst the dimers are the most stable among the aggregates of trihydroxy salts (NaGC and NaTC). Moreover, the binding energy of the constituent glycocholate salt units in most gaseous oligomers exceeds that of the corresponding taurocholate units. The ESIMS evidence has been confirmed by vapor-pressure measurements performed on NaGC and NaTC crystals and NaGDC and NaTDC fibers, the results of which show that the evaporation enthalpy of glycocholate exceeds that of taurocholate by some 50 kJ mol(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号