首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nickel and iron substituted LaCoO3 with rhombohedrally distorted perovskite structure were obtained in the temperature range of 600-900 °C by thermal decomposition of freeze-dried citrates and by the Pechini method. The crystal structure, morphology and defective structure of LaCo1−xNixO3 and LaCo1−xFexO3 were characterized by X-ray diffraction and neutron powder diffraction, TEM and SEM analyses and electron paramagnetic resonance spectroscopy. The reducibility was tested by temperature programmed reduction with hydrogen. The products of the partial and complete reduction were determined by ex-situ XRD experiments. The replacement of Co by Ni and Fe led to lattice expansion of the perovskite structure. For perovskites annealed at 900 °C, there was a random Ni, Fe and Co distribution. The morphology of the perovskites does not depend on the Ni and Fe content, nor does it depend on the type of the precursor used. LaCo1−xNixO3 perovskites (x>0.1) annealed at 900 °C are reduced to Co/Ni transition metal and La2O3 via the formation of oxygen deficient Brownmillerite-type compositions. For LaCo1−xNixO3 annealed at 600 °C, Co/Ni metal, in addition to oxygen-deficient perovskites, was formed as an intermediate product at the initial stage of the reduction. The interaction of LaCo1−xFexO3 with H2 occurs by reduction of Co3+ to Co2+ prior to the Fe3+ ions. The reducibility of Fe-substituted perovskites is less sensitive towards the synthesis procedure in comparison with that of Ni substituted perovskites.  相似文献   

2.
Oxides in the system PrCo1−xMgxO3 (x=0.0, 0.05, 0.10, 0.15, 0.20, 0.25) were synthesized by citrate technique and characterized by powder X-ray diffraction and scanning electron microscope. All compounds have a cubic perovskite structure (space group ). The maximum ratio of doped Mg in the system PrCo1−xMgxO3 is x=0.2. Further doping leads to the segregation of Pr6O11 in PrCo1−xMgxO3. The substitution of Mg for Co improves the performance of PrCoO3 as compared to the electrical conductivity measured by a four-probe electrical conductivity analyzer in the temperature range from 298 to 1073 K. The substitution of Mg for Co on the B site may be compensated by the formations of Co4+ and oxygen vacancies. The electrical conductivity of PrCo1−xMgxO3 oxides increases with increasing x in the range of 0.0-0.2. The increase in conductivity becomes considerable at the temperatures ?673 K especially for x?0.1; it reaches a maximum at x=0.2 and 1073 K. From x>0.2 the conductivity of PrCo1−xMgxO3 starts getting lower. This is probably a result of the segregation of Pr6O11 in PrCo1−xMgxO3 , which blocks oxygen transport, and association of oxygen vacancies. A change in activation energy for all PrCo1−xMgxO3 compounds (x=0-0.25) was observed, with a higher activation energy above 573 K and a lower activation energy below 573 K. The reasons for such a change are probably due to the change of dominant charge carriers from Co4+ to Vö in PrCo1−xMgxO3 oxides and a phase transition mainly starting at 573 K.  相似文献   

3.
The solid solution of YMn1−xFexO3 (x=0.0, 0.1, 0.2, 0.3, 0.5, 1.0) was synthesized from the citrate precursor route. The hexagonal crystal structure related to YMnO3 was stable for x?0.3. Rietveld refinement was carried out on the composition for x=0.3 and was refined to a major hexagonal phase (∼97%) with 3% of orthorhombic Y(Fe/Mn)O3 phase. The a-axis lattice constant increases and the c-axis lattice constant decreases with x for x?0.2. The increase in the c-axis lattice constant at x=0.3 could be due to the doping of significant amount of d5 ion (high spin Fe3+ ion) in a trigonal bipyramidal crystal field. The detailed structural, magnetic and dielectric properties are discussed.  相似文献   

4.
High-temperature electrical conductivity measurements, structural data from powder X-ray diffraction and 57Fe Mössbauer spectroscopy were combined to study the interrelationship of oxygen ion transport and p- and n-type transport in Sr2(Fe1−xGax)2O5, where x=0, 0.1 and 0.2. Although gallium substitution generally decreases the total ion-electron transport, the transition of the orthorhombic brownmillerite structure to a cubic phase on heating results in the recurrence of the conductivity to the same high level as in the parent ferrite (x=0). The changes of the partial contributions to the total conductivity as a function of x are shown to reflect a complicated interplay of the disordering processes that develop in the oxygen sublattice on heating in response to replacement of iron with gallium.  相似文献   

5.
Nanosize nickel-substituted cobalt ferrites were prepared using aerosol route and characterized by TEM, XRD, magnetic and Mössbauer spectroscopy. The particle size of as obtained samples was found to be ∼10 nm which increases upto ∼80 nm on annealing at 1200 °C. The unit cell parameter ‘a’ decreases linearly with the nickel concentration due to smaller ionic radius of nickel. The saturation magnetization for all the samples after annealing at 1200 °C lies in the range 47.6-84.5 emu/g. Room temperature Mössbauer spectra of as obtained samples exhibit a broad doublet, suggesting super paramagnetic nature of the sample. The broad doublet is further resolved into two doublets corresponding to the iron atoms residing at the surface and internal regions of the particle. The samples annealed at 1200 °C showed broad sextet, which is resolved into two sextets, corresponding to tetrahedrally and octahedrally coordinated Fe cations. Cation distribution calculated using XRD and Mössbauer data indicates a decrease in Fe3+(oct.)/Fe3+(tet.) ratio with increasing nickel concentration.  相似文献   

6.
Single crystals of Zn1−xSbxCr2−x/3Se4 based on the ZnCr2Se4 spinel, which is known to exhibit interesting magnetic and electronic transport properties, have been prepared by solid state reaction from the appropriate selenides. Three compounds of different Sb content (x=0.11, 0.16, and 0.20) were studied by X-ray diffraction, X-ray photoelectron scattering technique and macroscopic magnetic measurements with the aim to determine (i) stability of the cubic symmetry and (ii) influence of the Sb admixture on the magnetic properties. The results show that the Sb3+ and Zn2+ ions share the tetrahedral sites in the spinel structure, while the Cr3+ions carrying magnetic moments, are located in the octahedral sites. The X-ray photoelectron spectroscopy (XPS) data indicate that in this series of compounds the chromium ions have a 3d3 electronic configuration. The three samples studied order antiferromagnetically at low temperatures, with the magnetic characteristics being hardly altered with respect to those reported for the parent ZnCr2Se4 compound.  相似文献   

7.
A polycrystalline sample of Pr18Li8Fe4RuO39 has been synthesized by a solid state method and characterized by neutron powder diffraction, magnetometry and Mössbauer spectroscopy; samples of Pr18Li8Fe5−xMnxO39 and Pr18Li8Fe5−xCoxO39 (x=1, 2) have been studied by magnetometry. All these compounds adopt a cubic structure (space group , a0∼11.97 Å) based on intersecting 〈111〉 chains made up of alternating octahedral and trigonal-prismatic coordination sites. These chains occupy channels within a Pr-O framework. The trigonal-prismatic site in Pr18Li8Fe4RuO39 is occupied by Li+ and high-spin Fe3+. The remaining transition-metal cations occupy the two crystallographically-distinct octahedral sites in a disordered manner. All five compositions adopt a spin-glass-like state at 7 K (Pr18Li8Fe4RuO39) or below.  相似文献   

8.
The preparation of silicated hydroxyapatite Ca10(PO4)6−x(SiO4)x(OH)2−x (SiHA) with 0?x?2 was investigated using a wet precipitation method followed by a heat treatment. X-ray diffraction and Rietveld refinement, Fourier transformed IR (FTIR) spectroscopy, elemental analyses, transmission electron microscopy and thermal analyses were used to characterize the samples. The raw materials were composed of a partially silicated and carbonated apatite and a secondary minor phase containing the excess silicon. Single phase silicated hydroxyapatites, with 0?x?1, could be synthesized after a thermal treatment of the raw powders above 700 °C. The presence of carbonate groups in the raw apatite played an important role in the incorporation of silicates during heating. From the different results, the mechanisms of formation of SiHA are discussed.  相似文献   

9.
The local structure of In2O3 cosubstituted with Zn and Sn (In2−2xSnxZnxO3, x≤0.4 or ZITO) was determined by extended X-ray absorption fine structure (EXAFS) for x=0.1, 0.2, 0.3 and 0.4. The host bixbyite In2O3 structure is maintained up to the enhanced substitution limit (x=0.4). The EXAFS spectra are consistent with random substitution of In by the smaller Zn and Sn cations, a result that is consistent with the “good-to-excellent” conductivities reported for ZITO.  相似文献   

10.
The potential of the Fe3O4, Mn3O4, and MnFe2O4 nanophases for the removal of arsenic(III) and (V) from aqueous solutions was investigated using the batch technique. The structure and grain size of the nanoadsorbents were characterized using XRD and Secherrer's equation. The Fe3O4, Mn3O4, and MnFe2O4 had the crystal structure of magnetite, hausmannite, and Jacobsite, while the grain sizes were 28, 25, and 12 nm, respectively. It was found that the sorption determined using 100 ppb of either As(III) or (V) was pH independent from pH 2 through pH 6. However, at pH below 3 the nanomaterials released high concentrations of iron and manganese into solution. The amount of both As(III) and (V) per gram of adsorbent was found to increase with increasing concentration of As in solution. The XRD analysis showed no decrease in the average grain size of the nanoadsorbents reacted with 1000 ppm of either As(III) or (V) or a combination of 500 ppm of each As species. Finally Fe3O4, Mn3O4, and MnFe2O4 showed binding capacities (µg/g) of 32.2, 8.9, and 718 for As(III) and 1575, 212 and 2125 for As(V), respectively.  相似文献   

11.
Lithium substituted Li1+xMn2−xO4 spinel samples in the entire solid solution range (0?x?1/3) were synthesized by solid-state reaction. The samples with x<0.25 are stoichiometric and those with x?0.25 are oxygen deficient. High-temperature oxide melt solution calorimetry in molten 3Na2O·4MoO3 at 974 K was performed to determine their enthalpies of formation from constituent binary oxides at 298 K. The cubic lattice parameter was determined from least-squares fitting of powder XRD data. The variations of the enthalpy of formation from oxides and the lattice parameter with x follow similar trends. The enthalpy of formation from oxides becomes more exothermic with x for stoichiometric compounds (x<0.25) and deviates endothermically from this trend for oxygen-deficient samples (x?0.25). This energetic trend is related to two competing substitution mechanisms of lithium for manganese (oxidation of Mn3+ to Mn4+ versus formation of oxygen vacancies). For stoichiometric spinels, the oxidation of Mn3+ to Mn4+ is dominant, whereas for oxygen-deficient compounds both mechanisms are operative. The endothermic deviation is ascribed to the large endothermic enthalpy of reduction.  相似文献   

12.
Single crystals of KxMg(8+x)/3Sb(16−x)/3O16 (x≈1.76) with a hollandite superstructure were grown. Ordering schemes for guest ions (K) and the host structure were confirmed by the structure refinement using X-ray diffraction intensities. The space group is I4/m and cell parameters are a=10.3256(6), c=9.2526(17)Å with Z=3. Superlattice formation is primarily attributed to the Mg/Sb occupational modulation in the host structure. Mg/Sb ratios at two nonequivalent metal sites are 0.8977/0.1023 and 0.1612/0.8388. Two types of the cavity are seen in the tunnel, where parts of K ions deviate from the cavity center along the tunnel direction. Probability densities for K ions in the two cavities are different from each other, which seems to have arisen from the Mg/Sb modulation.  相似文献   

13.
The structural and magnetic properties of Ta-doped Ca4Mn3−xTaxO10 (0≤x≤0.3) compounds have been investigated. Structural refinement indicates that the Ta doping maintains the orthorhombic layered perovskite structure with space group Pbca as Ca4Mn3O10 but induces an increase in both unit cell volume and octahedral distortion. The magnetization measurements reveal that the magnetization first increases and reaches to maximum for the x=0.1 sample and then gradually decreases with the increase of Ta content. There appear short-range ferromagnetic (FM) clusters in all the doped samples, which are caused by the double-exchange interaction between Mn4+ and Mn3+ that is induced by the charge compensation effect. As x is higher than 0.1, the overall results show evidence for the gradual appearance of a cluster glass behavior. When x increases to 0.3, the long-range antiferromagnetic (AFM) ground state is melted into the short-range magnetically ordered regions due to the increase of Ta5+ and Mn3+ at the expense of Mn4+. The competition between AFM regions and FM clusters makes the short-range magnetic components frustrate when the temperature falls to a frustrating point, and thus cluster glass transition occurs.  相似文献   

14.
We report the synthesis of SrMn1−xGaxO3−δ perovskite compounds and describe the dependence of their phase stability and structural and physical properties over extended cation and oxygen composition ranges. Using special synthesis techniques derived from thermogravimetric measurements, we have extended the solubility limit of random substitution of Ga3+ for Mn in the cubic perovskite phase to x=0.5. In the cubic perovskite phase the maximum oxygen content is close to 3−x/2, which corresponds to 100% Mn4+. Maximally oxygenated solid solution compounds are found to order antiferromagnetically for x=0-0.4, with the transition temperature linearly decreasing as Ga content increases. Increasing the Ga content introduces frustration into the magnetic system and a spin-glass state is observed for SrMn0.5Ga0.5O2.67(3) below 12 K. These properties are markedly different from the long-range antiferromagnetic order below 180 K observed for the layer-ordered compound Sr2MnGaO5.50 with nominally identical chemical composition.  相似文献   

15.
Aluminum incorporation in the rhombohedrally distorted perovskite lattice of (La0.5Sr0.5)1−xFe1−yAlyO3−δ (x=0-0.05, y=0-0.30) decreases the unit cell volume and partial ionic and p-type electronic conductivities, while the oxygen nonstoichiometry and thermal expansion at 900-1200 K increase on doping. The creation of A-site cation vacancies has an opposite effect on the transport properties of Al-substituted ceramics. The maximum A-site deficiency tolerated by the (La,Sr)(Fe,Al)O3−δ structure is however limited, close to 3-4%. The Mössbauer spectroscopy revealed progressive localization of electron holes and a mixed charge-compensation mechanism, which results in higher average oxidation state of iron when Al3+ concentration increases. The average thermal expansion coefficients of (La0.5Sr0.5)1−xFe1−yAlyO3−δ are (12.2-13.0)×10−6 K−1 at 300-900 K and (20.1-30.0)×10−6 K−1 at 900-1200 K in air. The steady-state oxygen permeability (OP) of dense Al-containing membranes is determined mainly by the bulk ionic conductivity. The ion transference numbers at 973-1223 K in air, calculated from the oxygen permeation and faradaic efficiency (FE) data, vary in the range 1×10−4-3×10−3, increasing with temperature.  相似文献   

16.
The crystal and magnetic structures of Sr2(Fe1−xVx)MoO6 (0.03?x?0.1) compounds are refined by alternately using X-ray powder diffraction (XRD) and neutron powder diffraction (NPD) data collected at room temperature. The refinement results reveal that the V atoms selectively occupy the Mo sites instead of the Fe sites for x?0.1. The 3d/4d cation ordering decreases with the increase of the V content. Slight distortions in the lattice and metal octahedra are shown at 300 K, and the distortions increase at 4 K. The magnetic structure at 4 K can be modeled equally well with the moments aligning along [001], [110] or [111] directions. The total moments derived from the NPD data for the [110] and [111] direction models agree well with the magnetic measurements, whereas the [001] model leads to a smaller total moment. Bond valence analysis indicates that Sr ions are properly located in the structure and Mo ions are compatible with both the Fe sites and the Mo sites. The electronic effects are suggested to be responsible for the selective occupation of the V on the Mo sites due to the different distortions of the FeO6 and MoO6 octahedra.  相似文献   

17.
Oxides of the type YbMn1−xFexO3; x≤0.3 showing multiferroic behavior have been synthesized by the solid state route. These oxides crystallize in the hexagonal structure known for the parent YbMnO3 with the c/a ratio increasing with Fe substitution. The distortion of the MnO5 polyhedra (tbp) decreases and the Mn-O-Mn bonds in the a-b plane become shorter with Fe-substitution. Magnetic ordering is observed from the low temperature neutron diffraction study. The compounds were found to be antiferromagnetic and the ordering temperature TN increased from 82 K for pure YbMnO3 to 95 K for YbMn0.7Fe0.3O3. Variable temperature dielectric measurements (15-110 K) show an anomaly in the dielectric constant at temperatures close to the antiferromagnetic ordering temperature for all the compositions, showing a unique correlation between the magnetic and electric field. The increase in the ordering temperature in YbMn1−xFexO3 is explained on the basis of increase in covalence of Mn/Fe-O-Mn/Fe bonds (shorter) with iron substitution.  相似文献   

18.
The crystal structures and phase stability of the ternary alloys R3T4+xAl12−x (R=Y, Ce, Gd, U, Th; T=Fe, Ru) have been investigated using the interatomic potentials obtained by the lattice inversion method. These compounds crystallize in the hexagonal Gd3Ru4Al12-type structure and the calculated lattice constants correspond well with the experiments. Among the four different kinds of Al sites in the structure, the most preferential sites for Fe atoms or Ru atoms are 6h sites. The properties related to lattice vibration, such as the phonon density of states (DOS) and Debye temperature of R3Fe4Al12, have been evaluated. A qualitative analysis is carried out with the relevant potentials for the vibrational modes, which makes it possible to predict some thermodynamic properties.  相似文献   

19.
Novel complex oxides Ca14Zn6Ga10O35 and Ca14Zn5.5Ga10.5O35.25 were prepared in air at 1200 °C, 72 h. Refinements of their crystal structures using X-ray powder diffraction data showed that Ca14Zn6Ga10O35 is ordered (S.G. F23, =0.0458, Rp=0.0485, Rwp=0.0659, χ2=1.88) and Ca14Zn5.5Ga10.5O35.25 disordered (S.G. F432, =0.0346, Rp=0.0601, Rwp=0.0794, χ2=2.82) variants of the crystal structure of Ca14Zn6Al10O35. In the crystal structure of Ca14Zn6Ga10O35, there are large empty voids, which could be partially occupied by additional oxygen atoms upon substitution of Zn2+ by Ga3+ as in Ca14Zn5.5Ga10.5O35.25. These oxygen atoms are introduced into the crystal structure of Ca14Zn5.5Ga10.5O35.25 only as a part of four tetrahedra (Zn, Ga)O4 groups sharing common vertex. This creates a situation where even a minor change in the chemical composition leads to considerable anion and cation disordering resulting in a change of space group from F23 (no. 196) to F432 (no. 209).  相似文献   

20.
Mössbauer spectroscopy and neutron diffraction studies have been carried out for the α-Li3Fe2(PO4)3−x(AsO4)x (x=1, 1.5, 2, 3) solid solution, potential candidate for the cathode material of the lithium secondary batteries. The crystal and magnetic structures of all these phases are based on the structural and magnetic model corresponding to the α-Li3Fe2(PO4)3 phosphate parent, but with some differences promoted by the arsenate substitution. The PO4 and AsO4 groups have a random distribution in the structure. In all compounds the coupling of the magnetic moments takes place in the (001) plane, but the value of the angle between the moments and the x direction decreases from 38.3° (α-Li3Fe2(AsO4)3) to 4.7° (α-Li3Fe2(PO4)2(AsO4)1). This rotation arises from the change in the tilt angle between the Fe(1)O6 and Fe(2)O6 crystallographically and magnetically independent octahedra in the structures, and affects the effectiveness of the magnetic exchange pathways. The ordering temperature TN decreases with the increase of phosphate amount in the compounds. The existence of a phenomenon of canting and the evolution of the ferrimagnetic behavior in this solid solution is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号