首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The asymptotic behavior of solutions of the three-dimensional Navier-Stokes equations is considered on bounded smooth domains with no-slip boundary conditions and on periodic domains. Asymptotic regularity conditions are presented to ensure that the convergence of a Leray-Hopf weak solution to its weak ω-limit set (weak in the sense of the weak topology of the space H of square-integrable divergence-free velocity fields with the appropriate boundary conditions) are achieved also in the strong topology. It is proved that the weak ω-limit set is strongly compact and strongly attracts the corresponding solution if and only if all the solutions in the weak ω-limit set are continuous in the strong topology of H. Corresponding results for the strong convergence towards the weak global attractor of Foias and Temam are also presented. In this case, it is proved that the weak global attractor is strongly compact and strongly attracts the weak solutions, uniformly with respect to uniformly bounded sets of weak solutions, if and only if all the global weak solutions in the weak global attractor are strongly continuous in H.  相似文献   

2.
Dynamic von Karman equations with a nonlinear boundary dissipation are considered. Questions related to long time behaviour, existence and structure of global attractors are studied. It is shown that a nonlinear boundary dissipation with a large damping parameter leads to an existence of global (compact) attractor for all weak (finite energy) solutions. This result has been known in the case of full interior dissipation, but it is new in the case when the boundary damping is the main dissipative mechanism in the system. In addition, we prove that fractal dimension of the attractor is finite. The proofs depend critically on the infinite speed of propagation associated with the von Karman model considered.  相似文献   

3.
The GKN (Glazman, Krein, Naimark) Theorem characterizes all self-adjoint realizations of linear symmetric (formally self-adjoint) ordinary differential equations in terms of maximal domain functions. These functions depend on the coefficients and this dependence is implicit and complicated. In the regular case an explicit characterization in terms of two-point boundary conditions can be given. In the singular case when the deficiency index d is maximal the GKN characterization can be made more explicit by replacing the maximal domain functions by a solution basis for any real or complex value of the spectral parameter λ. In the much more difficult intermediate cases, not all solutions contribute to the singular self-adjoint conditions. In 1986 Sun found a representation of the self-adjoint singular conditions in terms of certain solutions for nonreal values of λ. In this paper we give a representation in terms of certain solutions for real λ. This leads to a classification of solutions as limit-point (LP) or limit-circle (LC) in analogy with the celebrated Weyl classification in the second-order case. The LC solutions contribute to the singular boundary conditions, the LP solutions do not. The advantage of using real λ is not only because it is, in general, easier to find explicit solutions but, more importantly, it yields information about the spectrum.  相似文献   

4.
Kirchhoff systems with dynamic boundary conditions   总被引:2,自引:0,他引:2  
We are interested in the study of the global non-existence of solutions of hyperbolic nonlinear problems, governed by the p-Kirchhoff operator, under dynamic boundary conditions, when p>pn with pn<2. The systems involve nonlinear external forces and may be affected by a perturbation of the type |u|p−2u. Several models already treated in the literature are covered in special subcases, and concrete examples are provided for the source term f and the external nonlinear boundary damping Q.  相似文献   

5.
We study von Karman evolution equations with non-linear dissipation and with partially clamped and partially free boundary conditions. Two distinctive mechanisms of dissipation are considered: (i) internal dissipation generated by non-linear operator, and (ii) boundary dissipation generated by shear forces friction acting on a free part of the boundary. The main emphasis is given to the effects of boundary dissipation. Under suitable hypotheses we prove existence of a compact global attractor and finiteness of its fractal dimension. We also show that any solution is stabilized to an equilibrium and estimate the rate of the convergence which, in turn, depends on the behaviour at the origin of the functions describing the dissipation.  相似文献   

6.
Let $\mathcal{M}\subset\mathbb{R}^{3}$ be an oriented compact surface on which we consider the system: $$\left \{ \begin{array}{l@{\quad}l} u_{tt} - \Delta_{\mathcal{M}} u + a(x)g_{0}(u_{t})=0 & \text{in } \mathcal{M}\times\mathopen{]} 0,\infty[ ,\\ \partial_{\nu_{co}}u +u + b(x)g(u_t)=0 & \text{on } \partial \mathcal {M}\times\mathopen{]}0,+\infty[. \end{array} \right . $$ If $\mathcal{M}$ along with the localizers a, b and the nonlinear feedbacks g,g 0 satisfy certain conditions then uniform (but not necessarily exponential) decay rates of the finite energy of solutions can be established. We present a unified approach that bridges and extends a number of earlier results on stabilization of 2nd-order hyperbolic equations on manifolds. The methodology captures geometric requirements for damping acting simultaneously on subsets of the interior and of the boundary, and shows how placements of these feedbacks can complement each other depending on the underlying surface. In addition, the results conveniently incorporate the existing theory that allows elimination of geometric conditions from the controlled boundary (in absence of nearby interior damping), and elimination of damping entirely from certain boundary neighborhoods. The model also admits feedbacks that grow sub- or super-linearly not only at the origin, but also at infinity and demonstrates an interplay between the regularity of solutions and asymptotic energy decay rates.  相似文献   

7.
In this paper, we study a semilinear weakly damped wave equation equipped with an acoustic boundary condition. The problem can be considered as a system consisting of the wave equation describing the evolution of an unknown function u = u(x, t), ${x\in\Omega}$ in the domain coupled with an ordinary differential equation for an unknown function δ = δ(x, t), ${x\in\Gamma:=\partial\Omega}$ on the boundary. A compatibility condition is also added due to physical reasons. This problem is inspired on a model originally proposed by Beale and Rosencrans (Bull Am Math Soc 80:1276–1278, 1974). The goal of the paper is to analyze the global asymptotic behavior of the solutions. We prove the existence of an absorbing set and of the global attractor in the energy phase space. Furthermore, the regularity properties of the global attractor are investigated. This is a difficult issue since standard techniques based on the use of fractional operators cannot be exploited. We finally prove the existence of an exponential attractor. The analysis is carried out in dependence of two damping coefficients.  相似文献   

8.
在考虑强阻尼效应的情形下,建立了一类轴向载荷作用下的波动方程.研究一类具有强阻尼的非线性波动方程的初边值问题的整体解的性态.以Sobolev空间的性质为工具,利用Faedo-Galerkin方法,证明了该方程在线性边界条件下弱解的存在唯一性,为力学中具有阻尼结构的振动问题的研究提供了重要依据.  相似文献   

9.
In this paper we consider the Elastic membrane equation with memory term and nonlinear boundary damping.Under some appropriate assumptions on the relaxation function h and with certain initial data,the global existence of solutions and a general decay for the energy are established using the multiplier technique.Also,we show that a nonlinear source of polynomial type is able to force solutions to blow up in finite time even in presence of a nonlinear damping.  相似文献   

10.
We consider uniform stability to a nontrivial equilibrium of a nonlinear fluid–structure interaction (FSI) defined on a two or three dimensional bounded domain. Stabilization is achieved via boundary and/or interior feedback controls implemented on both the fluid and the structure. The interior damping on the fluid combining with the viscosity effect stabilizes the dynamics of fluid. However, this dissipation propagated from the fluid alone is not sufficient to drive uniformly to equilibrium the entire coupled system. Therefore, additional interior damping on the wave component or boundary porous like damping on the interface is considered. A geometric condition on the interface is needed if only boundary damping on the wave is active. The main technical difficulty is the mismatch of regularity of hyperbolic and parabolic component of the coupled system. This is overcome by considering special multipliers constructed from Stokes solvers. The uniform stabilization result obtained in this article is global for the fully coupled FSI model.  相似文献   

11.
The dynamics of a (nonlinear) Berger plate in the absence of rotational inertia are considered with inhomogeneous boundary conditions. In our analysis, we consider boundary damping in two scenarios: (i) free plate boundary conditions, or (ii) hinged-type boundary conditions. In either situation, the nonlinearity gives rise to complicating boundary terms. In the case of free boundary conditions we show that well-posedness of finite-energy solutions can be obtained via highly nonlinear boundary dissipation. Additionally, we show the existence of a compact global attractor for the dynamics in the presence of hinged-type boundary dissipation (assuming a geometric condition on the entire boundary (Lagnese, 1989)). To obtain the existence of the attractor we explicitly construct the absorbing set for the dynamics by employing energy methods that: (i) exploit the structure of the Berger nonlinearity, and (ii) utilize sharp trace results for the Euler–Bernoulli plate in Lasiecka and Triggiani (1993).We provide a parallel commentary (from a mathematical point of view) to the discussion of modeling with Berger versus von Karman nonlinearities: to wit, we describe the derivation of each nonlinear dynamics and a discussion of the validity of the Berger approximation. We believe this discussion to be of broad value across engineering and applied mathematics communities.  相似文献   

12.
We consider the Cauchy problem for systems of semilinear hyperbolic equations. Using the LpLq type estimation for the corresponding linear parts, the existence and uniqueness of weak global solutions are investigated. We also established the behavior of solutions and their derivatives as t→+. Using the method of test functions developed in the works (Mitidieri and Pokhozhaev, 2001 [11], Veron and Pohozaev, 2001 [12] and Caristi, 2000 [23]) we obtain the analogue of the Fujita-Hayakawa type criterion for the absence of global solutions to some system of semilinear hyperbolic inequalities with damping. It follows that the conditions of existence theorem imposed on the growth of nonlinear parts are exact in some sense.  相似文献   

13.
Global existence of weak solutions to the Navier-Stokes equations in a cylindrical domain under boundary slip conditions and with inflow and outflow is proved. To prove the energy estimate, crucial for the proof, we use the Hopf function. This makes it possible to derive an estimate such that the inflow and outflow need not vanish as t→∞. The proof requires estimates in weighted Sobolev spaces for solutions to the Poisson equation. Our result is the first step towards proving the existence of global regular special solutions to the Navier-Stokes equations with inflow and outflow.  相似文献   

14.
In this paper, the one-sided exact boundary null controllability of entropy solutions is studied for a class of general strictly hyperbolic systems of conservation laws, whose negative (or positive) characteristic families are all linearly degenerate. The authors first prove the well-posedness of semi-global solutions constructed as the limit of ε-approximate front tracking solutions to the mixed initial-boundary value problem with general nonlinear boundary conditions and they establish various properties of both the ε-approximate front tracking solutions and such solutions. By means of essential modifications of the strategy suggested by the first author in [17] originally for the local exact boundary controllability in the framework of classical solutions, the one-sided local exact boundary null controllability of entropy solutions can then be realized via boundary controls acting on one side of the boundary, where the incoming characteristics are all linearly degenerate.  相似文献   

15.
The goal of this work is to study a model of the strongly damped wave equation with dynamic boundary conditions and nonlinear boundary/interior sources and nonlinear boundary/interior damping. First, applying the nonlinear semigroup theory, we show the existence and uniqueness of local in time solutions. In addition, we show that in the strongly damped case solutions gain additional regularity for positive times t>0. Second, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term and if the boundary source dominates the boundary damping, then the solution grows as an exponential function. Moreover, in the absence of the strong damping term, we prove that the solution ceases to exists and blows up in finite time.  相似文献   

16.
Mixed boundary value problems are characterised by a combination of Dirichlet and Neumann conditions along at least one boundary. Historically, only a very small subset of these problems could be solved using analytic series methods (“analytic” is taken here to mean a series whose terms are analytic in the complex plane). In the past, series solutions were obtained by using an appropriate choice of axes, or a co-ordinate transformation to suitable axes where the boundaries are parallel to the abscissa and the boundary conditions are separated into pure Dirichlet or Neumann form. In this paper, I will consider the more general problem where the mixed boundary conditions cannot be resolved by a co-ordinate transformation. That is, a Dirichlet condition applies on part of the boundary and a Neumann condition applies along the remaining section. I will present a general method for obtaining analytic series solutions for the classic problem where the boundary is parallel to the abscissa. In addition, I will extend this technique to the general mixed boundary value problem, defined on an arbitrary boundary, where the boundary is not parallel to the abscissa. I will demonstrate the efficacy of the method on a well known seepage problem.  相似文献   

17.
This paper is concerned with a system of nonlinear wave equations with supercritical interior and boundary sources and subject to interior and boundary damping terms. It is well-known that the presence of a nonlinear boundary source causes significant difficulties since the linear Neumann problem for the single wave equation is not, in general, well-posed in the finite-energy space H 1(Ω) × L 2(?Ω) with boundary data from L 2(?Ω) (due to the failure of the uniform Lopatinskii condition). Additional challenges stem from the fact that the sources considered in this article are non-dissipative and are not locally Lipschitz from H 1(Ω) into L 2(Ω) or L 2(?Ω). With some restrictions on the parameters in the system and with careful analysis involving the Nehari Manifold, we obtain global existence of a unique weak solution and establish (depending on the behavior of the dissipation in the system) exponential and algebraic uniform decay rates of energy. Moreover, we prove a blow-up result for weak solutions with nonnegative initial energy.  相似文献   

18.
The paper studies the global existence, asymptotic behavior and blowup of solutions to the initial boundary value problem for a class of nonlinear wave equations with dissipative term. It proves that under rather mild conditions on nonlinear terms and initial data the above-mentioned problem admits a global weak solution and the solution decays exponentially to zero as t→+∞, respectively, in the states of large initial data and small initial energy. In particular, in the case of space dimension N=1, the weak solution is regularized to be a unique generalized solution. And if the conditions guaranteeing the global existence of weak solutions are not valid, then under the opposite conditions, the solutions of above-mentioned problem blow up in finite time. And an example is given.  相似文献   

19.
General second order quasilinear elliptic systems with nonlinear boundary conditions on bounded domains are formulated into nonlinear mappings between Sobolev spaces. It is shown that the linearized mapping is a Fredholm operator of index zero. This and the abstract global bifurcation theorem of [Jacobo Pejsachowicz, Patrick J. Rabier, Degree theory for C1 Fredholm mappings of index 0, J. Anal. Math. 76 (1998) 289-319] allow us to carry out bifurcation analysis directly on these elliptic systems. At the abstract level, we establish a unilateral global bifurcation result that is needed when studying positive solutions. Finally, we supply two examples of cross-diffusion population model and chemotaxis model to demonstrate how the theory can be applied.  相似文献   

20.
The paper studies the existence and non-existence of global weak solutions to the Cauchy problem for a class of quasi-linear wave equations with nonlinear damping and source terms. It proves that when α?max{m,p}, where m+1, α+1 and p+1 are, respectively, the growth orders of the nonlinear strain terms, the nonlinear damping term and the source term, under rather mild conditions on initial data, the Cauchy problem admits a global weak solution. Especially in the case of space dimension N=1, the weak solutions are regularized and so generalized and classical solution both prove to be unique. On the other hand, if 0?α<1, and the initial energy is negative, then under certain opposite conditions, any weak solution of the Cauchy problem blows up in finite time. And an example is shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号