首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This Full Paper reports the formation of silver (Ag) NPs within spatially resolved two-component hydrogel beads, which combine a low-molecular-weight gelator (LMWG) DBS-CONHNH2 and a polymer gelator (PG) calcium alginate. The AgNPs are formed through in situ reduction of AgI, with the resulting nanoparticle-loaded gels being characterised in detail. The antibacterial activity of the nanocomposite gel beads was tested against two drug-resistant bacterial strains, often associated with hospital-acquired infections: vancomycin-resistant Enterococcus faecium (VRE) and Pseudomonas aeruginosa (PA14), and the AgNP-loaded gels showed good antimicrobial properties against both types of bacteria. It is suggested that the gel bead format of these AgNP-loaded hybrid hydrogels makes them promising versatile materials for potential applications in orthopaedics or wound healing.  相似文献   

2.
A photocleavable low-molecular-weight hydrogelator (LMWG) was synthesized based on coumarin derivative.~1H NMR and UV spectroscopy study suggested that the gelator had good gelling ability, and the driving force for the gelation were hydrogen bonding and π-π stacking. This molecular hydrogel exhibited satisfied photocleavage at C-N bond in 7-amino coumarin with the light irradiation (365 nm,77.5 mW/cm~2). The promising photo-triggered drug release of antineoplastics cytarabine hydrochloride has been obtained, due to the photocleavage motived gel-sol transition.  相似文献   

3.
《European Polymer Journal》2004,40(8):1637-1643
Polymeric hydrogels based on biocompatible materials, methacrylic acid (MAA), were designed and synthesized. Synthesis was carried out by free-radical copolymerization using potassium persulfate as initiator and N,N-methylenebisacrylamide as crosslinker. Hydrogels were also characterized by Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy (1H NMR) and differential scanning calorimetry (DSC). DSC was used for the quantitive determination of the amounts of freezing and non-freezing water of the hydrogels with 0.5% of N,N-methylenebisacrylamide. Equilibrium swelling of hydrogels was studied in phosphate buffer of physiological pH (1.0, 4.0, 7.4 and 8.5) at 37 °C. The swelling kinetic of the hydrogels were studied and the kinetic characteristic constant of copolymeric systems, k, and the exponent which characterizes the mechanism of water transport at short times, n, were obtained. Metoclopramide hydrochloride was entrapped into the hydrogels by sorption and the “in vitro” release profile of this drug was established in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). It was observed that the drug release mechanism was non-Fickian.  相似文献   

4.
A generally applicable strategy to obtain mechanically robust hydrogels for the incorporation and containment of functional reporter bacteria for the microarray and microparticle‐based detection and signaling of N‐acyl homoserine lactone autoinducers (3OC12HSL) at relevant concentrations is reported. For reinforcing hydrogels of 1,4‐bi(phenylalanine‐diglycol)‐benzene (PDB), a hybrid hydrogel is formed by the combination of PDB self‐assembly with Ca2+ mediated alginate crosslinking. The different assembly mechanisms are shown not to interfere with each other and despite the more than four‐fold increased moduli of the hydrogels, diffusion of autoinducers into the gels remains efficient and Escherichia coli pLuxR‐green fluorescent protein (GFP) reporter bacteria are proliferating. Templating affords reporter bacteria‐loaded hydrogels with controllable shape and size. Upon exposure to 3OC12HSL, the embedded bacteria exhibit an up to 12 ± 3 times increase in fluorescence intensity due to autoinducer‐triggered GFP expression. This approach can serve as a potentially generally applicable strategy to sensitively detect bacteria via their secreted autoinducers.  相似文献   

5.
Alicyclic hydroxy methacrylate monomer, o‐hydroxycyclohexyl methacrylate (HCMA), was synthesized and characterized by Fourier transformed infrared spectroscopy (FT‐IR) and proton nuclear magnetic resonance spectroscopy (1H‐NMR). Photopolymerization kinetics of HCMA was investigated via real‐time infrared spectroscopy (RT‐IR). Polymeric network hydrogels based on hydroxyethyl methacrylate (HEMA) and HCMA were prepared by using the photopolymerization technique. Mechanical strength, swelling characteristic, and controlled release behavior of hydrogels with various feed compositions were studied. Poly(HEMA‐co‐HCMA) hydrogel had higher storage modulus than that of poly(HEMA) hydrogel as investigated by dynamic mechanical analysis (DMA). Acid orange 8 was used as a model drug for the investigation of drug release behavior of copolymeric hydrogels. Results indicated that increase in HCMA ratio in hydrogel composition could reduce the swelling rate and prolong the release time. Scanning electron microscopy (SEM) was also utilized to study the surface morphology of hydrogels, and the results indicated that HCMA content influenced pore diameter on the hydrogel surface. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Dual responsive cyclotriphosphazene (CTP)‐based hydrogels have been synthesized for a controlled release of FU, a hydrophilic drugs. These hydrogels composed of mono (methacryloyl‐2‐ethoxy)‐pentakis(N1,N1‐dimethylpropane‐1,3‐diamino)‐cyclotriphosphazene (HEMA (DMPDA)5CP), acryl amide and pectin were synthesized by free radical polymerization method using methylenebisacrylamide cross linker. The CTP hydrogels were characterized to understand the structure, drug nature in the network and morphology by FTIR, DSC, XRD and SEM, respectively. In this paper, the swelling (dynamic and equilibrium) properties of cyclotriphosphazene hydrogels were investigated, showing dual (pH and thermo) responsiveness and large variation in the swelling capacity. Based on these results the structural parameters of the hydrogel networks such as the average molecular weight between cross‐links (Mc) and polymer–solvent interaction parameter (χ) were determined. The CTP hydrogels has high FU loading efficiency 65 ± 0.5. In‐vitro FU release of these hydrogels was controlled for about 24 hr also hydrogel showed a distinct initial burst. The CTP hydrogels are bearing both hydrophilic groups of pectin and hydrophobic groups of CTP exhibited dual responsive behaviors with pH and temperature. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The present research is based on the fabrication preparation of CS/PVA/GG blended hydrogel with nontoxic tetra orthosilicate (TEOS) for sustained paracetamol release. Different TEOS percentages were used because of their nontoxic behavior to study newly designed hydrogels’ crosslinking and physicochemical properties. These hydrogels were characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and wetting to determine the functional, surface morphology, hydrophilic, or hydrophobic properties. The swelling analysis in different media, degradation in PBS, and drug release kinetics were conducted to observe their response against corresponding media. The FTIR analysis confirmed the components added and crosslinking between them, and surface morphology confirmed different surface and wetting behavior due to different crosslinking. In various solvents, including water, buffer, and electrolyte solutions, the swelling behaviour of hydrogel was investigated and observed that TEOS amount caused less hydrogel swelling. In acidic pH, hydrogels swell the most, while they swell the least at pH 7 or higher. These hydrogels are pH-sensitive and appropriate for controlled drug release. These hydrogels demonstrated that, as the ionic concentration was increased, swelling decreased due to decreased osmotic pressure in various electrolyte solutions. The antimicrobial analysis revealed that these hydrogels are highly antibacterial against Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram negative (Pseudomonas aeruginosa and Escherichia coli) bacterial strains. The drug release mechanism was 98% in phosphate buffer saline (PBS) media at pH 7.4 in 140 min. To analyze drug release behaviour, the drug release kinetics was assessed against different mathematical models (such as zero and first order, Higuchi, Baker–Lonsdale, Hixson, and Peppas). It was found that hydrogel (CPG2) follows the Peppas model with the highest value of regression (R2 = 0.98509). Hence, from the results, these hydrogels could be a potential biomaterial for wound dressing in biomedical applications.  相似文献   

8.
Thermosensitive guar‐based hydrogels are obtained in water solutions by copper‐catalyzed 1,3‐dipolar cycloaddition between alkyne‐functionalized guars and α,ω‐diazido‐poly[(ethylene glycol)‐co‐(propylene glycol)]. Characterization by TGA, HR‐MAS 1H NMR, and rheology have shown that hydrogels with tunable physico‐chemical properties, such as crosslinking density, viscoelasticity, swelling ratio, and so forth, could be obtained by varying the guar molar mass, the degree of alkyne functionality, the guar/crosslinker weight ratio, and the reaction temperature. Based on swelling measurements, it has been shown that the thermal sensitiveness of guar‐based hydrogels is fast, reversible, and intimately related to the weight fraction of the thermosensitive crosslinker in the network. Finally, the monitoring of doxorubicin hydrochloride release has demonstrated the potential of these hydrogels as temperature‐dependent drug release devices. The robust, efficient, and orthogonal approach described herein represents a general approach towards the development of well‐controlled guar‐based hydrogels using α,ω‐diazido crosslinkers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2733–2742, 2010  相似文献   

9.
We report the preparation of hybrid self-assembled microgel beads by combining the low molecular weight gelator (LMWG) DBS-CONHNH2 and the natural polysaccharide calcium alginate polymer gelator (PG). Microgel formulations based on LMWGs are extremely rare due to the fragility of the self-assembled networks and the difficulty of retaining any imposed shape. Our hybrid beads contain interpenetrated LMWG and PG networks, and are obtained by an emulsion method, allowing the preparation of spherical gel particles of controllable sizes with diameters in the mm or μm range. Microgels based on LMWG/alginate can be easily prepared with reproducible diameters <1 μm (ca. 800 nm). They are stable in water at room temperature for many months, and survive injection through a syringe. The rapid assembly of the LMWG on cooling plays an active role in helping control the diameter of the microgel beads. These LMWG microbeads retained the ability of the parent gel to deliver the bioactive molecule heparin, and in cell culture medium this enhanced the growth of human mesenchymal stem cells. Such microgels may therefore have future applications in tissue repair. This approach to fabricating LMWG microgels is a platform technology, which could potentially be applied to a variety of different functional LMWGs, and hence has wide-ranging potential.

We report microgel beads with diameters of ca. 800 nm based on interpenetrating networks of a low-molecular-weight gelator and a polymer gelator, and demonstrate their use as heparin delivery vehicles to enhance stem cell growth.  相似文献   

10.
The paper presents the experimental studies regarding synthesis and characterization of hydrogels based on gellan (Gel)/chitosan (CS) and collagen (Col), obtained by crosslinking with glutaraldehyde (GLA). The influence of the polysaccharide content and GLA ratio on the final composition and swelling characteristics was evaluated. Hydrogels swelling analysis, in distilled water and phosphate buffer (PBS, pH 7.2) has shown higher swelling degrees at increased concentration of polysaccharide into hydrogels. In vitro release of pilocarpine has demonstrated the possibility to use gellan-collagen and chitosan-collagen hydrogels as ophthalmic drug delivery matrix.  相似文献   

11.
Bioreducible and core‐crosslinked hybrid micelles were for the first time fabricated from biodegradable and biocompatible trimethoxysilyl‐terminated and disulfide‐bond‐linked block copolymers poly(ε‐caprolactone)‐S‐S‐poly(ethylene oxide), which were prepared by combining thiol‐ene coupling reaction and ring‐opening polymerization. The molecular structures, physicochemical, self‐assembly, and bioreducible properties of these copolymers were thoroughly characterized by means of FTIR, 1H NMR, gel permeation chromatography, differential scanning calorimetry, wide‐angle X‐ray diffraction, dynamic light scattering (DLS), and transmission electron microscopy. The core‐crosslinking sol‐gel reaction was confirmed by 1H NMR, and the core‐crosslinked hybrid micelles contained about 3 wt % of silica. The bioreducible property of both uncrosslinked and core‐crosslinked micelles in 10 mM 1,4‐dithiothreitol (DTT) solution was monitored by DLS, which demonstrated that the PEO corona gradually shedded from the PCL core. The anticancer doxorubicin drug‐loaded micelles showed nearly spherical morphology compared with blank micelles, presenting a DTT reduction‐triggered drug‐release profile at 37 °C. Notably, the core‐crosslinked hybrid micelles showed about twofold drug loading capacities and a half drug‐release rate compared with the uncross‐liked counterparts. This work provides a useful platform for the fabrication of bioreducible and core‐crosslinked hybrid micelles potential for anticancer drug delivery system. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
Poly(ethylene glycol)‐grafted‐multiwalled carbon nanotube (MWNT‐g‐PEG) was synthesized by a coupling reaction and formed inclusion complexes (ICs) after selective threading of the PEG segment of the MWNT‐g‐PEG through the cavities of α‐cyclodextrins (α‐CDs) units. The polypseudorotaxane structures of the as‐obtained hydrogels were confirmed by 1H NMR, X‐ray diffraction and DSC analyses. The complexation of the PEG segments with α‐CDs and the hydrophobic interaction between the MWNT resulted in the formation of supramolecular hybrid hydrogels with a strong network. Thermal analysis showed that the thermal stability of the hydrogel was substantially improved by up to 100 °C higher than that of native hydrogel. The resultant hybrid hydrogels were found to be thixotropic and reversible, and could be applied as a promising injectable drug delivery system. The mechanical strength of the hybrid hydrogels was greatly improved in comparison with that of the corresponding native hydrogels. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3145–3151, 2010  相似文献   

13.
With the goal of imposing shape and structure on supramolecular gels, we combine a low‐molecular‐weight gelator (LMWG) with the polymer gelator (PG) calcium alginate in a hybrid hydrogel. By imposing thermal and temporal control of the orthogonal gelation methods, the system either forms an extended interpenetrating network or core–shell‐structured gel beads—a rare example of a supramolecular gel formulated inside discrete gel spheres. The self‐assembled LMWG retains its unique properties within the beads, such as remediating PdII and reducing it in situ to yield catalytically active Pd0 nanoparticles. A single PdNP‐loaded gel bead can catalyse the Suzuki–Miyaura reaction, constituting a simple and easy‐to‐use reaction‐dosing form. These uniquely shaped and structured LMWG‐filled gel beads are a versatile platform technology with great potential in a range of applications.  相似文献   

14.
In view of the pharmacological importance of dietary fibre, psyllium, to cure the constipation and diverticulitis, in the present study, an attempt has been made to modify psyllium polysaccharide with PVP to develop the hydrogel meant for slow and controlled drug delivery systems. The polymer was characterized by SEMs, FTIR, XRD, TGA and swelling studies. Swelling of hydrogels and drug (ciprofloxacin) release profile from the drug loaded hydrogels were determined for the evaluation of the swelling/release mechanism. Biomedical properties; biocompatibility and mucoadhesion of the hydrogels, were also studied. Swelling of the hydrogels and release of drugs from drug loaded hydrogels occurred through non-Fickian diffusion mechanism. Here it is pertinent to mention that both psyllium husk polysaccharide and antibiotic drug ciprofloxacin are used for gastrointestinal tract (GIT) problem, especially in case of diverticulitis. Hence, degradation of the polymer matrix and release of drug may exert the synergic effect and the present drug delivery system may act with enhanced potential.  相似文献   

15.
In this work, a novel biodegradable pH-sensitive hydrogel based on poly(?-caprolactone) (PCL), methoxpoly(ethylene glycol) (MPEG) and methacrylic acid (MAA) was prepared by UV-initiated free radical polymerization. The resulting macromonomers and hydrogels were characterized by FTIR and/or 1H NMR. Swelling behaviour and pH sensitivity of the hydrogels were studied in detail. With increase in pH of aqueous medium from 1.2 to 7.2, swelling ratio of the hydrogels increased accordingly. The hydrolytic degradation behaviour was also investigated. The prepared biodegradable pH-sensitive hydrogel based on PCL, MPEG, and MAA might have great potential application in smart drug delivery system.  相似文献   

16.
《中国化学会会志》2017,64(2):231-238
Sodium alginate (SA ) was combined with poly(N ‐isopropylacrylamide) (PNIPAAm ) to prepare thermosensitive hydrogels through semi‐interpenetrating polymer network (semi‐IPN ) and fully interpenetrating polymer network (full‐IPN ). The thermosensitive, swelling, mechanical, and thermal properties of pure PNIPAAm , SA /PNIPAAm semi‐IPN , and Ca‐alginate/PNIPAAm full‐IPN hydrogels were investigated. The formation of semi‐IPN and full‐IPN significantly improved the hydrogels’ swelling capability and mechanical properties without altering their thermosensitivity. 5‐Fluorouracil (5‐Fu) was selected as a model drug to study the release behaviors of the hydrogels. It was found that in vitro controlled drug release from semi‐IPN hydrogels showed an initial release burst, followed by a slower and sustained release, before reaching equilibrium. Full‐IPN hydrogels showed slow and sustained release during the whole process. Temperature and pH were found to affect the rate of drug release. Ca‐alginate/PNIPAAm full‐IPN hydrogels have potential application as drug delivery matrices in controlled drug release.  相似文献   

17.
Developing optimized hydrogel products requires an in-depth understanding of the mechanisms that drive hydrogel tunability. Here, we performed a full 4 × 4 factorial design study investigating the impact of gellan, a naturally derived polysaccharide (1%, 2%, 3%, or 4% w/v) and CaCl2 concentration (1, 3, 7, or 10 mM) on the viscoelastic, swelling, and drug release behavior of gellan hydrogels containing a model drug, vancomycin. These concentrations were chosen to specifically provide insight into gellan hydrogel behavior for formulations utilizing polymer and salt concentrations expanding beyond those commonly reported by previous studies exploring gellan. With increasing gellan and CaCl2 concentration, the hydrogel storage moduli (0.1–100 kPa) followed a power-law relationship and on average these hydrogels had higher liquid absorption capability and greater total drug release over 6 days. We suggest that the effects of gellan and CaCl2 concentration and their interactions on hydrogel properties can be explained by various phenomena that lead to increased swelling and increased resistance to network expansion.  相似文献   

18.
Hydrogel‐based drug delivery systems can leverage therapeutically favorable upshots of drug release and found clinical uses. Hydrogels offer temporal and spatial control over the release of different therapeutic agents. Because of their tailor made controllable degradability, physical properties, and ability to prevent the labile drugs from degradation, hydrogels provide platform on which diverse physicochemical interactions with entrapped drugs cause to control drug release. Herein, we report the fabrication of novel vinyltrimethoxy silane (VTMS) cross‐linked chitosan/polyvinyl pyrrolidone hydrogels. Swelling in distilled water in conjunction with different buffer and electrolyte solutions was performed to assess the swellability of hydrogels. Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and X‐ray diffraction (XRD) analysis were further conducted to investigate the possible interactions between components, thermal stability, and crystallinity of as‐prepared hybrid hydrogels, respectively. In vitro time‐dependent biodegradability, antimicrobial study, and cytotoxicity were also carried out to evaluate their extensive biocompatibility and cytotoxic behavior. More interestingly, in vitro drug release study allowed for the controlled release of cephradine. Therefore, this facile strategy developed the novel biocompatible and biodegradable hybrid hydrogels, which could significantly expand the scope of these hydrogels in other biomedical applications like scaffolds, skin regeneration, tissue engineering, etc.  相似文献   

19.
With the goal of imposing shape and structure on supramolecular gels, we combine a low-molecular-weight gelator (LMWG) with the polymer gelator (PG) calcium alginate in a hybrid hydrogel. By imposing thermal and temporal control of the orthogonal gelation methods, the system either forms an extended interpenetrating network or core–shell-structured gel beads—a rare example of a supramolecular gel formulated inside discrete gel spheres. The self-assembled LMWG retains its unique properties within the beads, such as remediating PdII and reducing it in situ to yield catalytically active Pd0 nanoparticles. A single PdNP-loaded gel bead can catalyse the Suzuki–Miyaura reaction, constituting a simple and easy-to-use reaction-dosing form. These uniquely shaped and structured LMWG-filled gel beads are a versatile platform technology with great potential in a range of applications.  相似文献   

20.
In this paper, the properties of the complete degradation process of newly synthesized multi-block 2.0 G-polyamidoamine-double bond (PAMAM-DB) and resoluble poly (ethylene glycol) -co- poly (glycolic acid) -co- methacryloyl chloride (PEG-co-PGA-co-DB, 4KG5-DB) macromonomers were reported. Rectangular shaped samples were prepared by crosslinking the components using both chemical and photo initiators and exposure to UV light. The aims of the study were to examine the effects of the vitro degradation and drug delivery of the crosslinking group on the properties of photocrosslinked hydrogels. The experimental variable was PAMAM-DB: 4KG5-DB ratio. The effects of this variable on local PH, water uptake, mass loss, and drug release were explored. Polymers were characterized by 1H NMR, 13C NMR, FT-IR, and SEM. Our study revealed that polymers with 40%, 50%, 60% 4KG5-DB (mass fraction) showed more excellent mechanical properties, 40% also showed outstanding vitro degradation properties. In vitro drug release, however, 60% drug released mechanism seemed to approach the Fickian diffusion and possessed more excellent drug release properties compared with formulation 40% and 50%. In general, an increase ratio of 4KG5-DB led to a higher density of tree-like polymer which resulted in slower of degradation and drug release. Incorporation of 4KG5-DB into the polymer was critical for maintaining integrity and increasing hydrophilicity during degradation. These results obtained suggest that this system could be potential as a material for bone replacement and controlled delivery of drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号