首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work reports a new electrochemical monitoring platform for sensitive detection of Cu2+ coupling click chemistry with nanogold‐functionalized PAMAM dendrimer (AuNP‐PAMAM). The system involved an alkyne‐modified carbon electrode and an azide‐functionalized AuNP‐PAMAM. Initially, the added Cu2+ was reduced to Cu+ by the ascorbate, and then the azide‐modified AuNP‐PAMAM was covalently conjugated to the electrode via Cu+‐catalyzed azide‐alkyne click reaction. The carried AuNPs accompanying PAMAM dendrimer could be directly monitored by stripping voltammetry after acidic pretreatment. By introduction of high‐loading PAMAM dendrimer with gold nanoparticles, as low as 2.8 pM Cu2+ (ppt) could be detected, which was 125‐fold lower than that of gold nanoparticle‐based labeling strategy. The method exhibited high specificity toward target Cu2+ against other potentially interfering ions, and was applicable for monitoring Cu2+ in drinking water with satisfactory results.  相似文献   

2.
Sharp dynamic thermal gradient (∇T ≈ 45 °C mm−1) field‐driven assembly of cylinder‐forming block copolymer (c‐BCP) films filled with PS‐coated gold nanoparticles (AuNPs; dNP ≈ 3.6 nm, φNP ≈ 0–0.1) is studied. The influence of increasing AuNP loading fraction on dispersion and assembly of AuNPs within c‐BCP (PS‐PMMA) films is investigated via both static and dynamic thermal gradient fields. With φNP increasing, a sharp transition from vertical to random in‐plane horizontal cylinder orientation is observed due to enrichment of AuNPs at the substrate side and favorable interaction of PMMA chains with gold cores. Furthermore, a detachable capping elastomer layer can self‐align these random oriented PMMA microdomains into unidirectional hybrid AuNP/c‐BCP nanolines, quantified with an alignment order parameter, S.

  相似文献   


3.
An efficient one-pot synthesis of β-ketophosphonates has been developed, via the reaction of α,β-alkenyl carboxylic acids or alkenes with H-phosphonates and air oxygen, catalyzed by CuSO4·5H2O in CH3CN. CH3CN plays a decisive role, probably by forming an active oxygen complex [(MeCN)nCuII-O-O·].  相似文献   

4.
《Vibrational Spectroscopy》2004,34(1):169-173
The monolayer of the mixture of octadecanoic acid and octadecylamine with molar ratio 1:1 has been investigated at the air–water interface. It was found that the monolayer shows a rather stable state at the surface pressure of 30 mN/m and this monolayer can be transferred onto a CaF2 plate by Langmuir–Blodgett (LB) technique. The infrared spectra of LB films indicated that octadecylammonium octadecanoate is formed by an intermolecular proton exchange between adjacent carboxylic and aminic groups (COO and NH3+). In three-layer LB film, the CH2 scissoring mode of the long hydrocarbon chains of octadecylammonium octadecanoate shows a broad band feature at about 1468 cm−1 while this vibrational mode of three-layer LB film of the mixture (1:1) of deuterated stearic acid and octadecylamine (octadecylammonium octadecanoate-d35, C18H37NH3+C17D35COO) only shows a narrow band. The broad feature of the CH2 scissoring mode in octadecylammonium octadecanoate probably originates from the coupling between the chain of stearic acid and that of octadecylamine while this kind of coupling could be completely removed in octadecylammonium octadecanoate-d35. Another conclusion presented in this paper is that there are no couplings among the chains of fatty acid or among the chains of octadecylamine in LB films of octadecylammonium octadecanoate.  相似文献   

5.
A novel dinuclear Cu(II) complex [Cu2(C10H8NO2)4(CH3OH)2] · 2CH3OH (I), where C10H8NO2 is anion of 3-indolylacetic acid, was synthesized and characterized by elemental analysis, IR spectroscopy, 1H NMR and single crystal X-ray diffraction. X-ray crystallography shows that Cu2+ ion is six-coordinated, embedded in a distorted octahedral center. Each Cu2+ ion is coordinated with four carboxylic oxygen atoms from four ligands, one oxygen atom from methanol and the other Cu2+ ion. Each ligand links two Cu2+ ions through carboxylic oxygen atoms, forming a dinuclear Cu(II) complex. The complex forms a two-dimensional layer structure through N-H??Oi intermolecular hydrogen bonds. The interaction of complex I with calf-thymus DNA (CT-DNA) has been explored by electronic absorption spectroscopy, EB (ethidium bromide) displacement experiments, salt effect, and viscosity measurements. All the results indicate that the complex binds to DNA in a partial intercalative mode. Moreover, agarose gel electrophoresis assay demonstrates that the complex possesses the ability to cleave pBR322 plasmid DNA.  相似文献   

6.
Mi Hee Kim 《Tetrahedron letters》2010,51(36):4712-10301
A colorimetric sensing ensemble was prepared by mixing readily prepared adenosine triphosphate (ATP)-stabilized AuNPs with Cu2+-phenanthroline complexes. The sensing mechanism of the ensemble was examined by UV-vis spectrometry and transmission electron microscopy. The studies showed that the Cu2+-phenanthroline complex was converted to free phenanthroline when exposed to cyanide anions and the free phenanthroline caused the ATP-stabilized AuNPs to aggregate, which in turn, resulted in a visible color change in the AuNP solution. The ensemble could detect cyanide ions in aqueous solution at physiological pH, either spectrophotometrically or visually, with high selectivity toward cyanide anions over a range of mono- and di-anions commonly found in biological and environmental systems. This sensing ensemble also allows a quantitative assay of the analyte in a neutral aqueous solution, down to a concentration of 10−5 M.  相似文献   

7.
The title dinuclear CuII complex, [Cu2(C7H8NO2)2(C7H9NO2)2](CH3COO)2, has been synthesized by the reaction of Cu(CH3COO)2·H2O with pdmH2 (pdmH2 is pyridine‐2,6‐diyldi­methanol) in the presence of tetra­butyl­ammonium hydro­xide. The title complex contains a centrosymmetric Cu2O2 core and each CuII atom has distorted octahedral geometry. Molecular [Cu2(pdmH)2(pdmH2)]2+ cations are connected by hydrogen bonds involving the CH3COO anions, forming one‐dimensional chains along the a axis.  相似文献   

8.
Gold nanoparticles (AuNPs) prepared by citrate reduction of aurochloric acid (HAuCl4) were functionalized by tris(4‐sulfonatophenyl)porphinatoiron(III) (FeIIIP2) and poly(ethylene glycol) with thiolated arms (PEG‐SH). FeIIIP2 on the AuNP surface existed as its μ‐oxo dimer, which was reduced by Na2S2O4 to yield monomeric FeIIP2. FeIIP2‐bearing AuNPs were further functionalized through inclusion of two sulfonatophenyl groups of FeIIP2 by a per‐O‐methylated β‐cyclodextrin dimer with a pyridine linker (Py3CD) to obtain AuNPs capable of carrying diatomic molecules in the body. The resulting AuNPs (hemoCD‐AuNPs) bound O2 as well as CO in an aqueous solution. Although a noncolloidal 1:1 complex of 5,10,15,20‐tetrakis(4‐sulfonatophenyl)porphinatoiron(II) and Py3CD injected into the femoral vein of a rat was rapidly excreted in the urine, no excretion was observed with ferric hemoCD‐AuNPs, which were gradually accumulated in the spleen and liver of a rat. These results suggest that hemoCD‐AuNPs can be used as a carrier of diatomic molecules such as O2 and CO in vivo.  相似文献   

9.
The authors describe an upconversion nanoparticle-based (UCNP–based) fluorometric method for ultrasensitive and selective detection of Cu2+. The UCNPs show a strong emission band at 550 nm under near-infrared excitation at 980 nm. The principle of the strategy is that gold nanoparticles (AuNP) can quench the fluorescence of UCNP. In contrast, the addition of L-cysteine (Cys) can induce the aggregation of AuNP, resulting in a fluorescence recovery of the UCNPs. On addition of Cu2+, it oxidizes Cys to cystine and is reduced to Cu+. The Cu+ thusformed can be oxidized cyclically to Cu2+ by dissolved O2, which catalyzes and recycles the whole reaction. Thus, the aggregation of AuNP is inhibited and the fluorescence recovered by Cys is quenched. Under the optimal condition, the quenching efficiency shows a good linear response to the concentrations of Cu2+ in the 0.4–40 nM range. The limit of detection is 0.16 nM, which is 5 orders of magnitude lower than the U.S. Environmental Protection Agency limit for Cu2+ in drinking water (20 μM). The method has been further applied to monitor Cu2+ levels in real samples. The results of detection are well consistent with those obtained by atomic absorption spectroscopy.
Graphical abstract Gold nanoparticles (AuNP) as a high efficient fluorescence quenching reagent of upconversion nanoparticles (UCNP) were used in a fluorometric method for detection of Cu2+ based on a cyclic catalytic oxidation amplification strategy.
  相似文献   

10.
Twelve-, fifteen-, and eighteen-membered diaza-crown-N, N-′dialkanoic acids LH2 and their inner salt copper(II) complexes CuL and dicopper complex [CuL(3). CuCl2. CH3OHn were obtained. The complexes of 15- and 18-membered ligands contain Cu2+ ion inside the ring.  相似文献   

11.
A facile method for preparing gold nanoparticle (AuNP) films with a high loading density based on the seed‐mediated growth of AuNPs on a polyelectrolyte multilayer (PEM) is reported. Use of PEMs as a base layer for gold seed adsorption confers controllability on the loading density of the AuNP film and size of the resulting AuNPs. In addition, the shape of the final AuNPs could be varied by adapting various species of polyelectrolytes. The optical response of the AuNP films is stable, because of the relatively uniform distribution of the AuNPs over a large area. The AuNP film has been used as a substrate for surface‐enhanced Raman scattering (SERS), and it shows stable and reproducible enhancement in the range from 105 to 107 depending on the fabrication condition.

  相似文献   


12.
Rate coefficients are directly determined for the reactions of the Criegee intermediates (CI) CH2OO and CH3CHOO with the two simplest carboxylic acids, formic acid (HCOOH) and acetic acid (CH3COOH), employing two complementary techniques: multiplexed photoionization mass spectrometry and cavity‐enhanced broadband ultraviolet absorption spectroscopy. The measured rate coefficients are in excess of 1×10?10 cm3 s?1, several orders of magnitude larger than those suggested from many previous alkene ozonolysis experiments and assumed in atmospheric modeling studies. These results suggest that the reaction with carboxylic acids is a substantially more important loss process for CIs than is presently assumed. Implementing these rate coefficients in global atmospheric models shows that reactions between CI and organic acids make a substantial contribution to removal of these acids in terrestrial equatorial areas and in other regions where high CI concentrations occur such as high northern latitudes, and implies that sources of acids in these areas are larger than previously recognized.  相似文献   

13.
The polymeric compounds [{Cu2I2(C6H5CN)2[cyclo‐(CH3AsO)4]} · C6H5CN] ( 1 ) and [Cu6Br6(C6H5CN)4{cyclo‐(CH3AsO)4}] ( 2 ) may be prepared by reaction of the copper(I) halide with methylcycloarsoxane (CH3AsO)n in benzonitrile at 100 °C. 1 contains four‐membered (CuI)2 rings, 2 tricyclic Cu6Br6 units, that are connected through bridging (CH3AsO)4 ligands into infinite chains. π–π Stacking of terminal C6H5CN ligands from parallel chains leads to the construction of porous frameworks, whose cavities are large enough in the case of 1 to accommodate guest C6H5CN molecules. In the presence of CsI, the self‐assembly reaction of CuI with (CH3AsO)4 in H2O–CH3OH–CH3CN (at 20 °C) or CH3CN (at 130 °C) affords [Cs(H2O)2][Cu3I4{cyclo‐(CH3AsO)4}2] · 0.5 CH3OH ( 3 ) and Cs[Cu3I4{cyclo‐(CH3AsO)4}2] ( 4 ), whose 1‐ and 2‐dimensional anionic coordination polymers are linked together through respectively [Cs{cyclo‐(CH3AsO)4‐κ4O}2]+ and [Cs{Cu3I4‐κ4I}{cyclo‐(CH3AsO)4‐κ4O}] sandwiches.  相似文献   

14.
A series of mononuclear binary and ternary Cu(I) complexes with formato, formamide, methylphenol, and methanethiolato ligands were optimized at DFT-B3LYP/6-31G** (BS1) and DFT-B3LYP/6-311++G** (BS2) levels of theory. The solvent effect was taken into account via PCM method (BS1W and BS2W, respectively). The coordination arrangement for [CuI(SCH3/S(H)CH3)(OOCH)]?/0 and [CuI(SCH3/S(H)CH3)(O(H)(C6H4)CH3)]0/+ was pseudo-linear and for [CuI(SCH3/S(H)CH3)(OOCH)(OC(H)NH2)]?/0 was pseudo-trigonal. The [CuI(S-S(H)CH3/CuI(S-SCH3)]+/0 link even to amide carbonyl and to general O(H)R residues (R=C6H5CH3). [CuI(SCH3)2(O(H)(C6H4)CH3)]? went towards dissociation of the O(H)(C6H4)CH3 ligand, whereas [CuI(S(H)CH3)2(O(H)(C6H4)CH3)]+ converged nicely, maintaining the hydroxy function linked to the metal. The trends of total electronic energies seemed to be significant, suggesting that linear CuIS2 coordination is more suitable than CuIS, CuIS3 and CuIS4 arrangements. The formation energies of [CuI(S(H)CH3/SCH3)(OOCH)]0/?1 were higher than those of [CuI(S(H)CH3/SCH3)2]+/? on starting from [CuI(S(H)CH3/CuI(SCH3)]+/0 by ca. 11–9 kcal mol?1 (BS2W). The structural arrangements, bond distances, and angles as well as computed spectroscopic parameters resulted in good agreement with experimental data for corresponding synthetic complexes and with metal site regions of several copper(I)-proteins. These data help in interpreting structural data of complex biological systems and in constructing reliable force fields for molecular mechanics computations.  相似文献   

15.
Synthesis and Structure Investigations of Iodocuprates(I). XV Iodocuprate(I) with Solvated Cations: [Li(CH3CN)4] [Cu2I3] and [Mg{(CH3)2CO}6][Cu2I4] [Li(CH3CN)4][Cu2I3] 1 and [Mg((CH3)2CO)6][Cu2I4] 2 were prepared by reactions of CuI with LiI in acetonitrile and of CuI with MgI2 in acetone. 1 crystallizes orthorhombic, Pnma, a = 552.7(2), b = 1258.8(8), c = 2516(1) pm, z = 4. [Li(CH3CN)4]+ cations are located between rod packings of CuI4 tetrahedra double chains [(CuI2/2I2/4)2]? parallel to the axis. Short intermolecular anion/cation contacts were observed. The crystal structure of 2 (monoclinic, P21/n, a = 1840(2), b = 1059.2(2), c = 1879(2)pm, β = 112.94(4)°, z = 4) is built up by [Mg((CH3)2CO)6]2+ cations forming a simple hexagonal sphere packing. The binuclear anions [Cu2I4]2? occupy holes in the trigonal prismatic channels formed by the cations.  相似文献   

16.
We first reported an ultrasensitive hydrogen peroxide biosensor in this work. The biosensor was fabricated by coating graphene–gold nanocomposite (G–AuNP), CdTe–CdS core–shell quantum dots (CdTe–CdS), gold nanoparticles (AuNPs) and horseradish peroxidase (HRP) in sequence on the surface of gold electrode (GE). Cyclic voltammetry and differential pulse voltammetry were used to investigate electrochemical performances of the biosensor. Since promising electrocatalytic synergy of G–AuNP, CdTe–CdS and AuNPs towards hydrogen peroxide was achieved, the biosensor displayed a high sensitivity, low detection limit (S/N = 3) (3.2 × 10−11 M), wide calibration range (from 1 × 10−10 M to 1.2 × 10−8 M) and good long-term stability (20 weeks). Moreover, the effects of omitting G–AuNP, CdTe–CdS and AuNP were also examined. It was found that sensitivity of the biosensor is more 11-fold better if G–AuNP, CdTe–CdS and AuNPs are used. This could be ascribed to improvement of the conductivity between graphene nanosheets in the G–AuNP due to introduction of the AuNPs, ultrafast charge transfer from CdTe–CdS to the graphene sheets and AuNP due to unique electrochemical properties of the CdTe–CdS, and good biocompatibility of the AuNPs for horseradish peroxidase. The biosensor is of best sensitivity in all hydrogen peroxide biosensors based on graphene and its composites up to now.  相似文献   

17.
Chiral assembly and asymmetric synthesis are critically important for the generation of chiral metal clusters with chiroptical activities. Here, a racemic mixture of [K(CH3OH)2(18‐crown‐6)]+[Cu5(StBu)6]? ( 1?CH3OH ) in the chiral space group was prepared, in which the chiral red‐emissive anionic [Cu5(StBu)6]? cluster was arranged along a twofold screw axis. Interestingly, the release of the coordinated CH3OH of the cationic units turned the chiral 1?CH3OH crystal into a mesomeric crystal [K(18‐crown‐6)]+[Cu5(StBu)6]? ( 1 ), which has a centrosymmetric space group, by adding symmetry elements of glide and mirror planes through both disordered [Cu5(StBu)6]? units. The switchable chiral/achiral rearrangement of [Cu5(StBu)6]? clusters along with the capture/release of CH3OH were concomitant with an intense increase/decrease in luminescence. We also used cationic chiral amino alcohols to induce the chiral assembly of a pair of enantiomers, [d /l ‐valinol(18‐crown‐6)]+[Cu5(StBu)6]? ( d /l ‐Cu5V ), which display impressive circularly polarized luminescence (CPL) in contrast to the CPL‐silent racemic mixture of 1?CH3OH and mesomeric 1 .  相似文献   

18.
A novel enzyme-free electrochemical sensor for H2O2 was fabricated by modifying an indium tin oxide (ITO) support with (3-aminopropyl) trimethoxysilane to yield an interface for the assembly of colloidal gold. Gold nanoparticles (AuNPs) were then immobilized on the substrate via self-assembly. Atomic force microscopy showed the presence of a monolayer of well-dispersed AuNPs with an average size of ~4 nm. The electrochemical behavior of the resultant AuNP/ITO-modified electrode and its response to hydrogen peroxide were studied by cyclic voltammetry. This non-enzymatic and mediator-free electrode exhibits a linear response in the range from 3.0?×?10?5 M to 1.0?×?10?3 M (M?=?mol?·?L?1) with a correlation coefficient of 0.999. The limit of detection is as low as 10 nM (for S/N?=?3). The sensor is stable, gives well reproducible results, and is deemed to represent a promising tool for electrochemical sensing.
Figure
AuNPs/ITO modified electrode prepared by self-assembly method exhibit good electrocatalytic activity towards enzyme-free detection H2O2. The linear range of typical electrode is between 3.0?×?10?5 M and 1.0?×?10?3 M with a correlation coefficient of 0.999 and the limit detection is down to 1.0?×?10?8 M.  相似文献   

19.
A very recent laser ablation‐molecular beam experiment shows that an Al+ ion can react with a single methylamine (MA, CH3NH2) or dimethylamine (DMA, (CH3)2NH) molecule to form a 1:1 ion–molecule complex Al+[CH3NH2] or Al+[(CH3)2NH)], whereas a dehydrogenated complex ion Cu+[CH3N] or Cu+[C2H5N] is detected, respectively, in the similar reaction for a Cu+ ion. Here, we show a comparative density functional theory study for the reactivities of the Al+ and Cu+ ions toward MA and DMA to reveal the intrinsic mechanism. It is found that the interactions of the Al+ ion with MA and DMA are mostly electrostatic, leading to the direct ion–molecule complexes, Al+? NH2CH3 and Al+? NH( CH3)2, in contrast to the non‐negligible covalent character in the corresponding Cu+‐containing complexes, Cu+? NH2CH3 and Cu+? NH( CH3)2. The general dehydrogenation mechanism for MA and DMA promoted by the Cu+ ion has been shown, and the preponderant structures contributing to the mass spectra of the product ions Cu+[CH3N] and Cu+[C2H5N] are rationalized as Cu+? NHCH2 and Cu+? N( CH2)( CH3). The presumed dehydrogenation reactions are also discussed for the Al+‐containing systems. However, the involved barriers are found to be too high to be overcome at low energy conditions. These results have rationalized all the experimental observations well. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

20.
Summary This paper describes the fragmentation patterns and the GC-MS quantitation possibilities of the trimethylsilyl derivatives of thirty-one aromatic carboxylic acids, using ion trap detection (ITD). Sixteen aralkyl carboxylic acids, including those containing a saturated aliphatic side chain {phenylacetic, 2-phenylbutyric, phenylglycolic (mandelic acid), β-phenyllactic, 3-hydroxyphenylacetic, β-phenylpyruvic and 3-(4-hydroxyphenyl)-propionic acids} and those with an unsaturated aliphatic side chain {cinnamic, 2-hydroxycinnamic (o-coumaric), 4-methoxycinnamic, 3-hydroxycinnamic (m-coumaric), 4-hydroxycinnamic (p-coumaric), 4-hydroxy-3-methoxycinnamic (ferulic acid), 3,4-dihydroxycinnamic (caffeic), and 4-dihydroxy-3,5-dimethoxycinnamic (sinapic) acids}, as well as, the fifteen hydroxy(methoxy) benzoic acids {benzoic, 2-hydroxybenzoic (salicylic), 3-hydroxybenzoic, 4-hydroxybenzoic, 3,5-dimethoxybenzoic, 3,4-dimethoxybenzoic (veratric), 2,6-dihydroxybenzoic (γ-resorcylic), 3-methoxy-4-hydroxybenzoic (vanillic), 2,5-dihydroxybenzoic (gentisic), 2,4-dihydroxybenzoic (β-resorcylic), 3,4-dihydroxybenzoic (protocatechuic), 3,5-dihydroxybenzoic (α-resorcylic), 2,4,5-trimethoxybenzoic (asaronic), 3,5-dimethoxy-4-hydroxybenzoic (syringic) and 3,4,5-trihydroxybenzoic (gallic) acids}, provided distinct fragmentation characteristics that were very useful for their identification and simultaneously quantitation. Based on 1–20 ng amounts of acids, very informative ions of high mass with considerable intensities ([M+TMS]+, [M+1]+), , ([M−CH3]+) were obtained. In the case of the cinnamic acid derivatives, several odd electron fragments are formed by the loss of CO, HCHO and/or Si(CH3)4 molecules. In the case of benzoic acids the molecular ion proved to be abundant in three, the [M−CH3]+ ion in nine cases out of fifteen. The special MacLafferty rearrangement product ([C6H5Si(CH3)2]+) was obtained in different yields. In addition to the TIC values, at least three, and in most cases four, selective fragment ions could be utilized for quantitation. The reproducibility of the data in the concentration range of 1–20 ng acids proved to be between 1.2 and 13.0% (R.S.D.). Presented at: Balaton Symposium on High-Performance Separation Methods, Siófok, Hungary, September 3–5, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号