首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
<正>Porous TiO_2/ZnO composite nanofibers have been successfully prepared by electrospinning technique for the first time.It was generated by calcining TiO_2/ZnCl_2/PVP[PVP:polyvinyl pyrrolidone)]nanofibers,which were electrospun from a mixture solution of TiO_2,ZnCl_2 and PVP.Transmission electron microscopy(TEM) and X-ray diffraction(XRD) analyses were used to identify the morphology of the TiO_2/ZnO nanofibers and a formation of inorganic TiO_2/ZnO fibers.The porous structure of the TiO_2/ZnO fibers was characterized by N_2 adsoption/desorption isotherm.Surface photovoltage spectroscopy(SPS) and photocatalytic activity measurements revealed advance properties of the porous TiO_2/ZnO composite nanofibers and the results were compared with pure TiO_2 nanofibers,pure ZnO nanofibers and TiO_2/ZnO nanoparticles.  相似文献   

2.
Hybrid silica-PVA nanofibers via sol-gel electrospinning   总被引:1,自引:0,他引:1  
We report on the synthesis of poly(vinyl alcohol) (PVA)-silica hybrid nanofibers via sol-gel electrospinning. Silica is synthesized through acid catalysis of a silica precursor (tetraethyl orthosilicate (TEOS) in ethanol-water), and fibers are obtained by electrospinning a mixture of the silica precursor solution and aqueous PVA. A systematic investigation on how the amount of TEOS, the silica-PVA ratio, the aging time of the silica precursor mixture, and the solution rheology influence the fiber morphology is undertaken and reveals a composition window in which defect-free hybrid nanofibers with diameters as small as 150 nm are obtained. When soaked overnight in water, the hybrid fibers remain intact, essentially maintaining their morphology, even though PVA is soluble in water. We believe that mixing of the silica precursor and PVA in solution initiates the participation of the silica precursor in cross-linking of PVA so that its -OH group becomes unavailable for hydrogen bonding with water. FTIR analysis of the hybrids confirms the disappearance of the -OH peak typically shown by PVA, while formation of a bond between PVA and silica is indicated by the Si-O-C peak in the spectra of all the hybrids. The ability to form cross-linked nanofibers of PVA using thermally stable and relatively inert silica could broaden the scope of use of these materials in various technologies.  相似文献   

3.
采用离子束溅射技术制备出TiO2/ITO、Zn2+掺杂的TiO2(TiO2-Zn)/ITO和TiO2/ZnO/ITO薄膜,采用表面敏化技术和旋转涂膜法,制备出(1,10-邻菲咯啉)2-2-(2-吡啶基)苯咪唑钌混配配合物(Rup2P)表面敏化的TiO2基复合薄膜Rup2P/TiO2/ITO、Rup2P/TiO2-Zn/ITO和Rup2P/TiO2/ZnO/ITO.表面光电压谱(SPS)结果发现:敏化后的TiO2基薄膜在可见区(400-600nm)产生SPS响应;TiO2基薄膜的能带结构不同,其在400-600nm和350nm处的SPS响应的峰高比不同.利用电场诱导表面光电压谱(EFISPS),测定TiO2基薄膜和表面敏化TiO2基复合薄膜各种物理参数,并确定其能带结构.分析可知,表面敏化TiO2基复合薄膜在400-600nm的SPS响应峰主要源于Rup2P分子的中心离子Ru4d能级到配体1,10-邻菲咯啉π*1和2-(2-吡啶基)苯咪唑π*2能级的跃迁;TiO2中Zn2+掺杂能级有利于Ru4d能级到配体π*1和π*2跃迁的光生电子向TiO2-Zn导带的注入;TiO2/ZnO异质结构有利于光生电子向ITO表面的转移,从而导致可见光(400-600nm)SPS响应增强以及光电转换效率的提高.  相似文献   

4.
We report solution properties of the blend solutions of poly(vinyl alcohol) (PVA) and poly(ethylene glycol) (PEG)–POSS telechelic and its corresponding hybrid nanofibers prepared by electrospinning. The morphologies, microstructures, and wettability of the resulting PVA/PEG3.4k–POSS hybrid nanofibers are studied. The morphologies of the resultant PVA/PEG3.4k–POSS nanofibers are regular with the fiber diameter ranging from 610 ± 110 to 810 ± 280 nm. When the content of PEG3.4k–POSS telechelic increases above 20 wt.%, the beaded fiber morphologies are observed due to severe aggregations of the PEG3.4k–POSS telechelics as well as increased viscosity at higher concentration. In addition, the solution properties of pure PEG3.4k–POSS telechelic solution (ca. 3–5 wt.%) and PVA/PEG3.4k–POSS solutions blended with PVA are explored, and found to show the reversible turbid-to-transparent transition behavior with respect to the solution temperature. Water contact angle measurement of the PVA/PEG3.4k–POSS nanofiber membranes demonstrates an enhanced hydrophobic nature due to the incorporated POSS moieties.  相似文献   

5.
PVA/SiO2-TiO2杂化电纺纤维膜的形态与性能   总被引:1,自引:0,他引:1  
以正硅酸乙酯(TEOS)、钛酸四丁酯(TBT)和聚乙烯醇(PVA)为原料, 用溶胶凝胶法制备了PVA/(SiO2-TiO2)杂化纺丝液, 将其电纺成纤维膜. 红外光谱结果证实, PVA的羟基与TEOS和TBT水解后的羟基发生了缩合反应, 杂化电纺纤维膜以网络结构形式相结合; X射线衍射分析表明, 杂化电纺纤维膜的结晶度比纯PVA电纺纤维膜小; 扫描电镜表明, 随杂化纤维膜中无机相含量的增加, 纤维的直径不断增加, 纤维出现一定的弯曲和扭曲, 并伴有少量带状结构的纤维; 紫外-可见光谱结果表明, TiO2的引入增加了纤维膜的抗紫外性; TGA热分析结果表明, 杂化纤维膜的耐热性能优于纯PVA电纺纤维膜的; 耐水性和稳定性测试表明, 杂化纤维膜的耐水性和稳定性优于纯PVA和PVA/SiO2电纺纤维膜的.  相似文献   

6.
经由溶胶-凝胶法过程,应用静电纺丝机原理,以聚乙烯醇(PVA)和无机盐(LiMn2O4)为前驱物,制备出了含有LiMn2O4无机组分的复合纳米纤维,为复合无机纳米纤维的制备方式供给了一条新的思路。实验中系统地研究了PVA的浓度对其所形成的纤维描摹特征的影响。PVA水溶液用于纺丝的最好质量分数约为8.0%。在实验过程中,随着PVA质量分数的渐渐增加,其所形成纤维的直径也随之渐渐增大,而溶液的黏度也在逐步增大,这就使得溶剂挥发变得越来越难,小液珠的表面难以构成理想的“泰勒锥”,电压过小,样品溶液无法纺丝,在针头处成水滴状落在针头下方。电压过大则会在纤维丝上呈现念珠形态,阻碍样品电纺时的形貌。实验表明,在施加18kV的高电压,默认机器的其它设定条件下,依托不同质量分数的PVA溶液可制备出三种不同的纤维。  相似文献   

7.
Electrospinning is known to be a highly versatile method to produce nanofibers, and several techniques have been developed to align nanofibers. In this paper, poly(vinyl alcohol) (PVA), poly(vinylpyrrolidone) (PVP), poly(propylene carbonate) (PC), poly(ethylene oxide) (PEO), PVA/Chitosan and PVA/Fe3O4 uniaxially aligned ultrafine fibers were obtained with electrospinning method by adding another electric field in the collection area. Alignment of the nanofibers was characterized by the use of digital cameras and field emission scanning electron microscopy, polarized Fourier transform infrared spectroscopy (FTIR), and wideangle X-ray diffraction (XRD). The mechanism of fiber alignment was investigated as well.  相似文献   

8.
以醋酸锌和乙酰丙酮银为前驱体, 通过同轴静电纺丝和热处理过程在氟掺杂氧化锡(FTO)导电玻璃上制备了ZnO/Ag2O同轴纳米纤维. 采用X射线衍射(XRD)、 X射线光电子能谱(XPS)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 拉曼光谱和紫外-可见漫反射光谱(UV-Vis DRS)等手段对材料进行了表征. 以氙灯模拟可见光光源, 亚甲基蓝为目标降解物, 考察了所制备纳米纤维的光电催化活性. 结果表明, 同轴ZnO/Ag2O纳米纤维具有壳核类似结构(ZnO为壳, Ag2O为核), Ag2O与ZnO形成的异质结和杂质能级降低了ZnO的带隙能, 提高了对可见光的利用率. 在可见光下, 与纯ZnO相比, ZnO/Ag2O具有很强的光电催化能力, 并且Ag2O的量对同轴纤维光电催化活性影响很大, 在同样光电催化条件下, ZnO/Ag2O-7同轴纳米纤维的光电催化效果最好, 亚甲基蓝降解率达93%, 动力学常数最大为1.13×10 -2 min -1.  相似文献   

9.
采用两步化学溶液沉积法在氧化铟锡(ITO)导电玻璃衬底上制备了ZnO/CdS复合纳米棒阵列薄膜.利用X射线衍射(XRD)仪、扫描电子显微镜(SEM)、紫外-可见(UV-Vis)吸收分光光度计、荧光(PL)光谱仪及表面光电压谱(SPS)研究了不同CdS沉积时间对复合薄膜的晶体结构、形貌、光电性质的影响.研究结果表明:ZnO纳米棒阵列表面包覆CdS纳米颗粒后,其吸收光谱可拓展到可见光区;与吸收光谱相对应在可见光区出现新的光电压谱响应区,这一现象证实,通过与CdS复合可显著提高ZnO纳米棒阵列在可见光区的光电转换性能;随着CdS纳米颗粒沉积时间的延长,复合纳米棒阵列薄膜在大于383nm波长区域的光电压强度逐渐减弱,而在小于383nm波长区域的光电压强度逐渐增强.用两种不同的电荷产生和分离机制对这一截然相反的光响应过程进行了详细的讨论和解释.  相似文献   

10.
二氧化硅/聚乙烯醇杂化电纺纤维膜的制备与结构形态   总被引:3,自引:0,他引:3  
用溶胶-凝胶(Sol-Gel)法制备了不同二氧化硅含量的PVA/SiO2杂化纺丝液,将其电纺成纤维膜.XRD结果表明,杂化电纺纤维膜的结晶度较纯PVA电纺纤维膜小;FTIR证实了PVA的羟基与正硅酸乙酯水解后的羟基发生了缩合反应,杂化电纺纤维膜是以网络结构形式相结合的;FESEM表明,PVA/SiO2质量比为4∶1时,纤维光滑,分散比较均匀.随着二氧化硅含量的增加,纤维直径变细,纺锤形珠节结构增多.加入金属盐NaCl和MgCl2后,纤维直径变细,圆形珠节增多.从理论上分析了纤维膜结构形态的形成机理.  相似文献   

11.
A novel electrospinning method using airflow, namely high pressure air‐jet split electrospinning, was proposed to fabricate polymer nanofibers with ultrahigh production rate. 7 wt % polyacrylonitrile spinning solution with a 0.157 Pa s viscosity was divided into micron size droplets by the filter screen in the front of the nozzle, and then these droplets were divided and split through high pressure airflow, which were drafted into nanofibers directly in the electric field and airflow field. In this study, the electric field distributions with different positive electrodes were simulated and their effect on fiber formation was investigated. The results show that electric field distribution and its intensity depended on electrodes area, a broader electric field distribution with a stronger intensity would bring about a larger cone angle of spraying jet region, at the same time, the contrast in the spray region enhanced. When the whole nozzle was charged, thinner fibers with about 170 nm could be prepared and the fiber production was 75.6 g/h. Compared with the conventional needle electrospinning, the throughput of nanofibers could be improved by thousands of times based on this novel electrospinning method. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 993–1001  相似文献   

12.
Immobilization of cellulase in nanofibrous PVA membranes by electrospinning   总被引:6,自引:0,他引:6  
Electrospinning is a nanofiber-forming process by which either polymer solution or melt is charged to high voltages. With high specific surface area and porous structure, electrospun fibrous membranes are excellent candidates for immobilization of enzymes. In this paper, immobilization of cellulase in nanofibrous poly(vinyl alcohol) (PVA) membranes was studied by electrospinning. PVA and cellulase were dissolved together in an acetic acid buffer (pH 4.6) and electrospun into nanofibers with diameter of around 200 nm. The nanofibrous membranes were crosslinked by glutaraldehyde vapor and examined catalytic efficiency for biotransformations. The activity of immobilized cellulase in PVA nanofibers was over 65% of that of the free enzyme. Nanofibers were superior to casting films from the same solution for immobilization of cellulase. The activity of immobilized cellulase descended with ascending in enzyme loading efficiency and crosslinking time, which retained 36% its initial activity after six cycles of reuse.  相似文献   

13.
A load-bearing matrix filled with biologically active compounds is an efficient method for transporting them to the target location. Bee-made propolis has long been known as a natural product with antibacterial and antiviral, anti-inflammatory, antifungal properties, and anti-oxidative activity. The aim of the research is to obtain stable propolis/PVA solutions and produce fibers by electrospinning. To increase propolis content in fibers as much as possible, various types of propolis extracts were used. As a result of the research, micro- and nano-fiber webs were obtained, the possible use of which have biomedical and bioprotective applications. All used materials are edible and safe for humans, and fiber webs were prepared without using any toxic agent. This strategy overcomes propolis processing problems due to limitations to its solubility. The integration of different combinations of extracts allows more than 73 wt% of propolis to be incorporated into the fibers. The spinning solution preparation method was adapted to each type of propolis, and by combining the methods, solutions with different propolis extracts were obtained. Firstly, the total content of flavonoids in the propolis extracts was determined for the assessment and prediction of bioactivity. The properties of the extracts relevant for the preparation of electrospinning solutions were also evaluated. Secondly, the most appropriate choice of PVA molecular weight was made in order not to subject the propolis to too high temperatures (to save resources and not reduce the bioactivity of propolis) during the solution preparation process and to obtain fibers with the smallest possible diameter (for larger surface-to-volume ratios of nanofibers and high porosity). Third, electrospinning solutions were evaluated (viscosity, pH, conductivity and density, shelf life) before and after the addition of propolis to predict the maximum propolis content in the fibers and spinning stability. Each solution combination was spun using a cylindrical type electrode (suitable for industrial production) and tested for a stable electrospinning process. Using adapted solution-mixing sequences, all the obtained solutions were spun stably, and homogeneous fibers were obtained without major defects.  相似文献   

14.
采用静电纺丝法制备了磷钼酸/聚苯乙烯(PS)/聚乙烯醇(PVA)复合纤维,并将其模压成膜.利用红外光谱(IR)、扫描电子显微镜(SEM)及X射线能谱(EDX)等对复合纤维及其膜的结构与形貌进行表征,并对复合纤维膜的光催化性能、力学性能及在水中稳定性进行测试.结果表明,在复合纤维中磷钼酸的Keggin结构得到保持.PS与PVA质量比为1∶1时,复合纤维形貌最佳,表面光滑,直径较小且分布均匀,复合纤维的直径随着磷钼酸含量的增加而减小.将磷钼酸固载于复合纤维膜上比直接使用具有更高的光催化活性,光照25 min后接近98%的甲基橙降解;复合纤维膜易于回收再利用,5次重复使用后,复合纤维膜没有破损,磷钼酸损失较少,光催化性能无明显下降.复合纤维膜的强度随磷钼酸含量的增加先增大后减小,韧性随PVA含量的增加而增大,随磷钼酸含量的增加而减小.  相似文献   

15.
以聚对苯二甲酸二醇酯(PET)无纺布为基底,聚偏氟乙烯(PVDF)纳米纤维为支撑层,聚乙烯醇(PVA)纳米纤维膜为分离层,采用静电纺丝法制备超滤膜,并用水/丙酮混合溶液对复合纳米纤维膜表面进行溶液处理,再加入戊二醛交联改性得到致密分离层.采用扫描电子显微镜(SEM)和红外光谱(FTIR)表征了复合超滤膜的表面,用水接触角(WCA)表征复合超滤膜的亲水性.在0.02 MPa恒压下死端过滤油/水乳液,测试复合超滤膜的过滤性能.结果表明,最优条件下制备的复合超滤膜死端过滤油/水乳液的通量为(42.50±4.78)L/(m~2·h),截留率达到(95.72±0.33)%;循环使用5次后,依然具有较好的过滤性能,常压下死端过滤复合超滤膜的纯水通量为(3469±28)L/(m~2·h).  相似文献   

16.
以二水氯化亚锡(SnCl2·2H2O)为盐原料,采用静电纺丝的方法制备了SnO2纳米纤维.为了研究ZnO掺杂对SnO2形貌、结构及化学成分的影响,分别制备了不同含量ZnO掺杂的SnO2/ZnO复合材料.利用热重-差热分析(TG-DTA)、X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱仪、扫描电镜(SEM)及能量色散X射线(EDX)光谱对材料的结晶学特性及微结构进行了表征.制备的SnO2/ZnO复合材料是由纳米量级的小颗粒构成的分级结构材料.ZnO含量不同,对应的SnO2/ZnO复合材料结构不同.表征结果表明ZnO的掺杂量对SnO2材料的形貌及结构均起着重要作用.将制备的不同ZnO含量的SnO2/ZnO复合材料进行气敏测试,测试结果表明,Sn:Zn摩尔比为1:1制作的气敏元件对甲醇的灵敏度优于其它摩尔比的气敏元件.讨论了SnO2/ZnO复合材料气敏元件的敏感机理.同时针对Sn:Zn摩尔比为1:1时表现出最好的气敏响应,分析了其原因,包括Zn的替位式掺杂行为、ZnO的催化作用、过量ZnO对SnO2生长的抑制作用以及SnO2与ZnO晶粒界面处的异质结.  相似文献   

17.
We report the fabrication of multiwalled carbon nanotube (MWCNT)-incorporated electrospun polyvinyl alcohol (PVA)/chitosan (CS) nanofibers with improved cellular response for potential tissue engineering applications. In this study, smooth and uniform PVA/CS and PVA/CS/MWCNTs nanofibers with water stability were formed by electrospinning, followed by crosslinking with glutaraldehyde vapor. The morphology, structure, and mechanical properties of the formed electrospun fibrous mats were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and mechanical testing, respectively. We showed that the incorporation of MWCNTs did not appreciably affect the morphology of the PVA/CS nanofibers; importantly the protein adsorption ability of the nanofibers was significantly improved. In vitro cell culture of mouse fibroblasts (L929) seeded onto the electrospun scaffolds showed that the incorporation of MWCNTs into the PVA/CS nanofibers significantly promoted cell proliferation. Results from this study hence suggest that MWCNT-incorporated PVA/CS nanofibrous scaffolds with small diameters (around 160 nm) and high porosity can mimic the natural extracellular matrix well, and potentially provide many possibilities for applications in the fields of tissue engineering and regenerative medicine.  相似文献   

18.
Ultrafine fibers were spun from polyacrylonitrile (PAN)/N,N-dimethyl formamide (DMF) solution as a precursor of carbon nanofibers using a homemade electrospinning set-up. Fibers with diameter ranging from 200 nm to 1200 nm were obtained. Morphology of fibers and distribution of fiber diameter were investigated varying concentration and applied voltage by scanning electric microscopy (SEM). Average fiber diameter and distribution were determined from 100 measurements of the random fibers with an image analyzer (SemAfore 5.0, JEOL). A more systematic understanding of process parameters was obtained and a quantitative relationship between electrospinning parameters and average fiber diameter was established by response surface methodology (RSM). It was concluded that concentration of solution played an important role to the diameter of fibers and standard deviation of fiber diameter. Applied voltage had no significant impact on fiber diameter and standard deviation of fiber diameter.  相似文献   

19.
For the production of uniaxially oriented nanofibers and a three‐dimensional, biodegradable scaffold consisting of nanosized fibers, an electrospinning process was modified with a cylindrical auxiliary electrode that was connected to a spinning nozzle to stabilize the initially spun solution and a parallel‐plate electrode as a collector generating an alternating‐current electric field for collecting spun jets. With the complex electric field in the electrospinning process, biodegradable poly(ε‐caprolactone) nanofibers were stacked on a thin, dielectric substrate covering the electrode according to a predetermined design. The degree of orientation of spun nanofibers to the field direction of a target electrode was highly dependent on the applied frequency and field strength of the target electrode. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1426–1433, 2006  相似文献   

20.
通过静电纺丝技术合成碳纳米纤维,以循环伏安法在此碳纤维上电聚合乙酸锌制备复合纳米材料作为一种新型的电化学增敏剂,用于修饰玻碳电极,开发了一种基于碳纤维和氧化锌复合材料的新型电化学传感器(ZnO/CNF/GCE)。使用循环伏安法、差分脉冲伏安法等进行电化学催化性能的研究,并优化实验条件。结果表明,与裸电极相比,在pH 5.5磷酸盐缓冲溶液中,ZnO/CNF/GCE修饰电极能使氧氟沙星的峰电流明显提升,线性范围1~200μmol/L,检测限为0.33μmol/L。该ZnO/CNF/GCE修饰电极已用于氧氟沙星滴耳液中氧氟沙星的含量测定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号