首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The antiviral effects of the cationic acrylate polymer E100 on a panel of lipid-enveloped viruses and the interactions involved are studied. The treatment of several common viruses with E100 induced a dose-dependent inhibition of the infectivity of viruses below the detection limit of the assays employed. Similarly, the treatment of human sera infected with HIV or HCV reduced virus RNA plasma levels to undetectable values. This implies that Eudragit E100 can interact with enveloped viruses, even in the presence of proteins, through a mechanism that is not reversed by titration of the positively charged groups of the polymer, opening the possibility to remove viral particles with the polymer as it is eliminated.  相似文献   

2.
A quartz crystal microbalance was used to investigate the adsorption behavior of liposomes and mixed micelles with attached carbohydrate recognition structures at lectin-coated quartz plates. With a self-assembly technique, the quartz was coated with the lectin Concanavalin A. In a first attempt, liposomes of natural soybean PC as well as synthetic POPC, containing 10% reactive N-Glut-PE each, were decorated with a mannopyranoside recognition structure to investigate the specific adsorption at the lectin-coated quartz surface in dependence on the concentration. In a second model, the bile salt sodium cholate was introduced to solubilize the mannopyranoside-modified liposomes and to transform them into mannopyranoside-modified binary mixed micelles. The adsorption of these micelles was further investigated. In a third approach, the adsorption behavior of mannopyranoside-modified ternary mixed bile salt-phosphatidylcholine-fatty acid micelles was characterized with sodium laurate, palmitate, and oleate as fatty acids. The micelles with oleate showed only a small frequency decrease, whereas the micelles with laurate and palmitate induced higher frequency changes. A dependence on the alkyl chain length could be detected. While the adsorption of liposomes containing recognition structures at QCM surfaces is nowadays well-established, the QCM detection of the adsorption of mixed bile salt micelles, transformed from these liposomes by solubilization, is a novel and very promising field for the development of innovative colloidal drug delivery systems.  相似文献   

3.
The interactions of the bile salts sodium cholate (NaC) and sodium deoxycholate (NaDC) in 0.1 M NaCl (pH 7.4) with membranes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG) and mixtures of DPPC and DPPG at molar ratios of 3:1 and 1:1 were studied by means of high-sensitivity isothermal titration calorimetry (ITC), dynamic light scattering (DLS), and differential scanning calorimetry (DSC). The partition coefficients and the transfer enthalpies for the incorporation of bile salt molecules into the phospholipid membranes were determined by ITC. The vesicle-to-micelle transition was investigated by ITC, DLS, and DSC. The phase boundaries for the saturation of the vesicles and their complete solubilization established by ITC were in general agreement with DLS data, but systematic differences could be seen due to the difference in detected physical quantities. Electrostatic repulsion effects between the negatively charged bile salt molecules and the negatively charged membrane surfaces are not limiting factors for the vesicle-to-micelle transition. The membrane packing constraints of the phospholipid molecules and the associated spontaneous curvature of the vesicles play the dominant role. DPPG vesicles are transformed by the bile salts into mixed micelles more easily or similarly compared to DPPC vesicles. The saturation of mixed DPPC/DPPG vesicles requires less bile salt, but to induce the solubilization of the liposomes, significantly higher amounts of bile salt are needed compared to the concentrations required for the solubilization of the pure phospholipid systems. The different solubilization behavior of DPPC/DPPG liposomes compared to the pure liposomes could be due to a specific "extraction" of DPPG into the mixed micelles in the coexistence region.  相似文献   

4.
Cryo-TEM and NaCl-leakage experiments demonstrated that the cationic polymer polylysine induces fusion of anionic liposomes but that the cationic polymer poly(N-ethyl-4-vinylpyridinium bromide) (PEVP) does not, although both polymers bind strongly to the liposomes. The difference was traced to the thickness of the coatings at constant charge coverage. Polylysine is believed to form planar β-sheets that are sufficiently thin to allow membrane fusion. In contrast, looping and disorganization among adsorbed PEVP molecules physically prevent fusion. A similar effect is likely to be applicable to important polycation-induced fusion of cell membranes.  相似文献   

5.
Addition of plasma to the photosensitizing agent N-aspartyl chlorin e6 (NPe6) in Triton X-100 micelles results in a blue-shift of fluorescence emission, corresponding to a change in the average environmental dielectric constant from 8 to 32. This effect was not observed with anionic or cationic detergents or with several other sensitizers including a close analog, chlorin e6. The apolipoprotein fraction of high-density lipoproteins (HDL) was found responsible for this blue-shift. These results indicate a highly selective interaction between HDL apolipoproteins and NPe6 molecules. Addition of the HDL apolipoprotein to NPe6 incorporated into Triton micelles decreased the fraction of NPe6 molecules accessible to Cd2+ -induced fluorescence quenching but resulted in an increase in the Stern-Volmer quenching constant (an index of quenching efficiency).  相似文献   

6.
Plasma protein adsorption is regarded as a key factor in the in vivo organ distribution of intravenously administered drug carriers, and strongly depends on vector surface characteristics. The present study aimed to characterize the “protein corona” absorbed onto DC-Chol-DOPE cationic liposomes. This system was chosen because it is one of the most efficient and widely used non-viral formulations in vitro and a potential candidate for in vivo transfection of genetic material. After incubation of human plasma with cationic liposomes, nanoparticle–protein complex was separated from plasma by centrifugation. An integrated approach based on protein separation by one-dimensional 12% polyacrylamide gel electrophoresis followed by the automated HPLC-Chip technology coupled to a high-resolution mass spectrometer was employed for protein corona characterization. Thirty gel lanes, approximately 2 mm, were cut, digested and analyzed by HPLC-MS/MS. Fifty-eight human plasma proteins adsorbed onto DC-Chol-DOPE cationic liposomes were identified. The knowledge of the interactions of proteins with liposomes can be exploited for future controlled design of colloidal drug carriers and possibly in the controlled creation of biocompatible surfaces of other devices that come into contact with proteins in body fluids.
Scheme of protein adsorption onto nanoparticle surface  相似文献   

7.
Interaction of the cationic polymer poly-N-ethyl-4-vinylpyridinium bromide with bilayer vesicles (liposomes) composed of zwitterionic dipalmitoylphosphatidylcholine and anionic cardiolipin (the molar fraction of the negatively charged cardiolipin groups is 0.2) is studied. The composition and characteristics of the polycation-liposome complex are shown to be controlled by the phase state of the lipid membrane. Liposomes whose membranes exist in their LC state (“liquid” liposomes) keep their integrity in the complex with polycation. The adsorbed polycation can be completely removed from the liposomal membrane by the addition excess amounts of a competing polyanion. The adsorption of polycation on the surface of liposomes whose membranes exist the gel state (“solid” liposomes) leads to the formation of defects in the membrane, and the polycation’s adsorption with such liposomes becomes irreversible. The defects that form are also preserved when solid liposomes on whose surface the polycation is sorbed are transformed into the liquid state. Moreover, the reversible contact between polycation and liquid liposomes becomes irreversible once the liposomal membranes bound to the polycation transform into the solid state.  相似文献   

8.
The anionic surfactant sodium dodecyl sulfate (SDS) was used to induce the initial steps of the solubilization of liposomes. The structural transformations as well as the kinetics associated with this initial period were studied by means of time-resolved small-angle X-ray scattering (SAXS) using a synchrotron radiation source. Neutral and electrically charged (anionic and cationic) liposomes were used to investigate the effect of the electrostatic charges on the kinetics of these initial steps. The mechanism that induces the solubilization process consisted of adsorption of surfactant on the bilayers and desorption of mixed micelles from the liposomes surface to the aqueous medium. In all cases the time needed for desorption of the first mixed micelles was shorter than that for complete adsorption of the surfactant on the liposomes surface. The present work demonstrates that adsorption of the SDS molecules on negatively charged liposomes was slower and release of mixed micelles from the surface of these liposomes was faster than for neutral liposomes. In contrast, in the case of positively charged liposomes, the adsorption and release processes were, respectively, faster and slower than those for neutral vesicles.  相似文献   

9.
For efficient delivery of siRNA into the cytoplasm, a smart block copolymer of poly(ethylene glycol) and charge‐conversion polymer (PEG‐CCP) is developed by introducing 2‐propionic‐3‐methylmaleic (PMM) amide as an anionic protective group into side chains of an endosome‐disrupting cationic polyaspartamide derivative. The PMM amide moiety is highly susceptible to acid hydrolysis, generating the parent cationic polyaspartamide derivative at endosomal acidic pH 5.5 more rapidly than a previously synthesized cis‐aconitic (ACO) amide control. The PMM‐based polymer is successfully integrated into a calcium phosphate (CaP) nanoparticle with siRNA, constructing PEGylated hybrid micelles (PMM micelles) having a sub‐100 nm size at extracellular neutral pH 7.4. Ultimately, PMM micelles achieve the significantly higher gene silencing efficiency in cultured cancer cells, compared to ACO control micelles, probably due to the efficient endosomal escape of the PMM micelles. Thus, it is demonstrated that fine‐tuning of acid‐labile structures in CCP improves the delivery performance of siRNA‐loaded nanocarriers.

  相似文献   


10.
Firefly bioluminescence (BL) was greatly affected by cationic surfactants coexisting with liposomes containing phosphatidylcholine and cholesterol. In this study, the effects of the type and concentration of cationic surfactants on BL were studied in the presence of the liposomes. Three types of cationic surfactant: benzalkonium chloride (BAC), n-dodecyltrimethylammonium bromide (DTAB), and benzethonium chloride (BZC), were used. As a common effect in these surfactants, BL intensity was increased and then drastically decreased with increasing surfactant concentration. This can be explained by the formation of cationic liposomes as BL enhancers at low concentration of the surfactant, and by the transformation into cationic (mixed) micelles as inhibitors at high concentration. The maximal BL intensity and the concentration for the maximal BL were dependent on the type of the surfactants. To explain the differences in these parameters in the enhanced BL, we determined the distribution coefficient, K, of the surfactants to the liposomal membrane. The result indicated that the surfactant with higher K value gives the maximal BL intensity at lower concentration.  相似文献   

11.
The effect of micelles of different surfactants (cationic, anionic, and neutral) on the kinetics of the glucose oxidase-catalyzed reduction of ferrocenium cations RFc+ (R=H, Bun) byd-glucose was studied by spectrophotometry. In micellar media of Triton X-100 and sodium dodecyl sulfate (SDS), the Michaelis dependence of the reaction rate on the HFc+ concentration is observed, while this dependence has an extreme character in cationic micelles of cetyltrimethylammonium bromide (CTAB). The nature and concentration of surfactants of all types have a slight effect on the rate of reduction of HFc+. The level of enzymatic activity is approximately equal in the case of Triton X-100 and CTAB and is considerably lower in the SDS micelles. On going from HFc+ to BunFc+, the reaction rate is maximum in the cationic CTAB micelles, the anionic SDS micelles exhibit almost no activity, and the activity has an intermediate value in neutral micelles of Triton X-100. The conditions are presented under which the micellar medium controls the catalytic activity of glucose oxidase with respect to ferrocenium cations. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1795–1801, October, 1997.  相似文献   

12.
Micellar behavior of dodecyldimethylamine oxide (DMDAO) with bile salts [sodium deoxycholate (NaDC) and sodium cholate (NaC)] with and without NaCl was studied by surface tension. Interaction parameters of the mixed micelles were estimated using Rubingh's theory. Strong synergism observed for each mixed system, which is a common feature shown by anionic-cationic mixtures. The mixed solutions remained clear even at equimolar ratio. Different behavior of the two bile salts is explained on the basis of their orientation in cationic micelles.  相似文献   

13.
Steady-state and time-resolved emission spectroscopic techniques have been employed to characterize the drug species of dibucaine and to identify its location in micellar Triton X-100 (neutral), hexadecyltrimethyl ammonium bromide (cationic) and lithium dodecyl sulfate (anionic) solutions at 77 K. Under physiological conditions, the dibucaine is shown to exist in the free base form (D) while solubilized in the hydrocarbon core of neutral micelles. In cationic micellar solution, dibucaine exists as the monocation species (DH+) where the anesthetic is solubilized in the extramicellar aqueous solution and D is solubilized in the hydrophobic region with close proximity to the micellar interface. In the anionic micelles, interfacial solubilization is most consistent with a site in which the tertiary amino group of the monocation dibucaine (DH+) is anchored at the micellar interface with its quinoline analog penetrating the hydrophobic region. The distinct properties observed for the drug species (i.e. D and DH+) and their solubilization sites in micelles are consistent with a balance between hydrophobic forces, surface polarity and the interfacial electrostatic potential present in the micellar solubilization sites. These observations could lend insight into the molecular basis of pharmacological action, in particular the mechanism of local anesthetic drug transport across membranes.  相似文献   

14.
Surfactant-templated polymer films prepared from polyethylenimine (PEI), cetyltrimethylammonium bromide (CTAB), and octaethylene glycol monohexadecyl ether (C(16)E(8)) were examined and the effect of increasing the percentage of nonionic surfactant in the micelles measured using both surface and bulk-sensitive techniques. It was found that there is a strong interaction between CTAB and C(16)E(8), although no interaction between the C(16)E(8) and PEI was observed. Generally, increasing the percentage of C(16)E(8) in the micelles decreases both the thickness and degree of order in the films; however, it was observed, depending on the conditions, that films could still be formed with as little as 20% cationic surfactant. Experiments on the CTAB/Brij56/PEI system were also performed and these indicate that it is similar to the CTAB/C(16)E(8)/PEI system.  相似文献   

15.
Ionizable amino lipids are being pursued as an important class of materials for delivering small interfering RNA (siRNA) therapeutics, and research is being conducted to elucidate the structure-activity relationships (SAR) of these lipids. The pK(a) of cationic lipid headgroups is one of the critical physiochemical properties of interest due to the strong impact of lipid ionization on the assembly and performance of these lipids. This research focused on developing approaches that permit the rapid determination of the relevant pK(a) of the ionizable amino lipids. Two distinct approaches were investigated: (1) potentiometric titration of amino lipids dissolved in neutral surfactant micelles; and (2) pH-dependent partitioning of a fluorescent dye to cationic liposomes formulated from amino lipids. Using the approaches developed here, the pK(a) values of cationic lipids with distinct headgroups were measured and found to be significantly lower than calculated values. It was also found that lipid-lipid interaction has a strong impact on the pK(a) values of lipids. Lysis of model biomembranes by cationic lipids was used to evaluate the impact of lipid pK(a) on the interaction between cationic lipids and cell membranes. It was found that cationic lipid-biomembrane interaction depends strongly on lipid pK(a) and solution pH, and this interaction is much stronger when amino lipids are highly charged. The presence of an optimal pK(a) range of ionizable amino lipids for siRNA delivery was suggested based on these results. The pK(a) methods reported here can be used to support the SAR screen of cationic lipids for siRNA delivery, and the information revealed through studying the impact of pK(a) on the interaction between cationic lipids and cell membranes will contribute significantly to the design of more efficient siRNA delivery vehicles.  相似文献   

16.
Cationic polymers exhibit high cytotoxicity via strong interaction with cell membranes. To reduce cell membrane damage, a hydrophilic polymer is introduced to the cationic nanoparticle surface. The hydrophilic polymer coating of cationic nanoparticles resulted in a nearly neutral nanoparticle. These particles are applied to mouse fibroblast (3T3) and human cervical adenocarcinoma (Hela) cells. Interestingly, nanoparticles with a long cationic segment decrease cell activity regardless of cell type, while those with a short segment only affect 3T3 cell activity at lower concentrations less than 500 µg mL?1. Most nanoparticles are located inside 3T3 cells but on the cell membrane of Hela cells. The short cationic nanoparticle shows negligible cell membrane damage despite its high accumulation on Hela cell membranes. Cell activity changed by hydrophilic polymer‐coated cationic nanoparticles is caused by incorporated nanoparticle accumulation in the cells, not cell membrane damage. To suppress the cytotoxicity from the cationic polymer, cationic nanoparticle needs to completely cover with hydrophilic polymer so as not to exhibit the cationic effect and applies to cell with low concentrations to reduce the nonselective cytotoxicity from the cationic polymer.  相似文献   

17.
Multicomponent cationic lipid-DNA complexes (lipoplexes) were prepared by adding linear DNA to mixed lipid dispersions containing two populations of binary cationic liposomes and characterized by means of small angle X-ray scattering (SAXS). Four kinds of cationic liposomes were used. The first binary lipid mixture was made of the cationic lipid (3'[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol (DC-Chol) and the neutral helper lipid dioleoylphosphocholine (DOPC) (DC-Chol/DOPC liposomes), the second one of the cationic 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and the neutral dioleoylphosphatidylethanolamine (DOPE) (DOTAP/DOPE liposomes), the third one of DC-Chol and DOPE (DC-Chol/DOPE liposomes), and the fourth one of DOTAP and DOPC (DOTAP/DOPC liposomes). Upon DNA-induced fusion of liposomes, large lipid mixing at the molecular level occurs. As a result, highly organized mixed lipoplexes spontaneously form with membrane properties intermediate between those of starting liposomes. By varying the composition of lipid dispersions, different DNA packing density regimes can also be achieved. Furthermore, occurring lipid mixing was found to induce hexagonal to lamellar phase transition in DOTAP/DOPE membranes. Molecular mechanisms underlying experimental findings are discussed.  相似文献   

18.
The new fluorescent membrane probe Fluorazophore-L, a lipophilic derivative of the azoalkane 2,3-diazabicyclo[2.2.2]oct-2-ene, is employed to study the quenching of alpha-tocopherol (alpha-Toc) by time-resolved fluorescence in the microheterogeneous environments of Triton XR-100 and SDS micelles, as well as POPC liposomes. Fluorazophore-L has a small nonaromatic fluorescent polar headgroup and an exceedingly long-lived fluorescence (e.g., 140 ns in aerated SDS micelles), which is efficiently quenched by alpha-Toc (3.9 x 10(9) M(-1) s(-1) in benzene). Based on solvatochromic effects and the accessibility by water-soluble quenchers, the reactive headgroup of Fluorazophore-L, along with the chromanol group of alpha-Toc, resides at the water-lipid interface, which allows for a diffusion-controlled quenching in the lipidic environments. The quenching experiments represent an immobile or stationary case; that is, interparticle probe or quencher exchange during the excited-state lifetime is insignificant. Different quenching models are used to characterize the dynamics and antioxidant action of alpha-Toc in terms of diffusion coefficients or, where applicable, rate constants. The ideal micellar quenching model is suitable to describe the fluorescence quenching in SDS micelles and affords a pseudo-unimolecular quenching rate constant of 2.4 (+/- 0.4) x 10(7) s(-1) for a single quencher per micelle along with a mean aggregation number of 63 +/- 3. In Triton micelles as well as in unilamellar POPC liposomes, a two-dimensional (lateral) diffusion model is most appropriate. The mutual lateral diffusion coefficient D(L) for alpha-Toc and Fluorazophore-L in POPC liposomes is found to be 1.8 (+/- 0.1) x 10(-7) cm(2) s(-1), about a factor of 2 larger than for mutual diffusion of POPC, but more than 1 order of magnitude lower than a previously reported value. The comparison of the different environments suggests a quenching efficiency in the order benzene > SDS micelles > Triton micelles > POPC liposomes, in line with expectations from microviscosity. The kinetic measurements provide important benchmark values for the modeling of oxidative stress in membranes and other lipidic assemblies. The special case of small lipidic assemblies (SDS micelles), for which the net antioxidant efficacy of alpha-Toc may be lower than expected on the grounds of its diffusional behavior, is discussed.  相似文献   

19.
One of the challenges for fluorescent sensors is to reduce their target environment size from a micrometer scale, such as biological cells, to a nanometer scale. Proton maps near membranes are of importance in bioenergetics and are the first goal in nanometer-scale analysis with fluorescent sensors. Thirty-three fluorescent photoinduced-electron-transfer pH sensors bearing an environment-sensitive benzofurazan fluorophore and having different hydrophobicity/hydrophilicity and hydrogen-bonding abilities were prepared. These sensors were scattered in nanospaces associated with anionic and cationic micelles as model membranes to indicate proton availability and polarity in local spaces. Gathering the data from the sensors allowed the successful drawing of proton maps near anionic and cationic micelles, in which electrostatic attraction/repulsion of protons by the charged head groups of micelles and dielectric suppression of protons were clearly observed.  相似文献   

20.
Two new water soluble dendronized polymers (PLn) from acrylate Behera amine monomer of different molecular weights were successfully synthesized. The polymers were characterized by FTIR, NMR, GPC and DLS. Both GPC and DLS results indicated that these PLn have a remarkable tendency to form aggregates in solution that lead to apparent molecular weights that are much higher than their theoretical values, as well as large diameters in solution. However, the addition of any PLn to water did not cause any increase in viscosity up to concentrations of 1000 ppm. The possible interactions of PLn with the cationic surfactant CTAT were explored by solution rheometry. A synergistic viscosity enhancement was found by adding small amounts of dendronized PLn polymers to a CTAT solution composed of entangled worm-like micelles. The highest association tendency with CTAT was found for PL1 at the maximum polymer concentration before phase separation (i.e., 100 ppm). The solution viscosity at low-shear rates could be increased by an order of magnitude upon addition of 100 ppm of PL1 to a 20mM CTAT solution. For this mixture, the fluid obtained was highly structured and exhibited only shear thinning behavior from the smallest shear rates employed. These PL1/CTAT mixtures exhibited an improved elastic character (as determined by dynamic rheometry) that translated in a much longer value of the cross-over relaxation time and a pronounced thixotropic behavior which are indicative of a strong intermolecular interaction. In the case of the polymer with a higher theoretical molecular weight, PL2, its association with CTAT leads to an extraordinary doubling of solution viscosity with just 0.25 ppm polymer addition to a 20mM CTAT solution. However, such synergistic viscosity enhancement saturated at rather low concentrations (25 ppm) indicating an apparent lower solubility as compared to PL1, a fact that may be related to its higher molecular weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号