首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
富氧条件下Cu/Al2O3催化剂上C3H6选择性还原NO的研究   总被引:9,自引:0,他引:9  
以Cu/Al2O3为催化剂,对富氧条件下C3H6为还原剂选择性催化还原NO反应进行了研究.活性评价结果表明,与高活性的Ag/Al2O3催化剂相比,Cu/Al2O3催化剂选择性还原NO的活性较低,NO的最高转化率仅为40%.在所考察的温度范围(473~723K)内,红外谱图中不存在有机含氮化合物(R—ONO和R—NO2)的特征振动吸收峰.作为反应中间体—NCO的前驱体,有机含氮化合物在Cu/Al2O3催化剂表面难以生成是造成催化剂选择性还原NO活性低的直接原因.在Cu/Al2O3催化剂上,NO2吸附能够优先发生,并以NO3-物种的形式覆盖在大部分催化剂表面.动态原位红外光谱实验发现,这种NO3-表面物种与C3H6的反应性较差,使生成有机含氮化合物的关键反应难以发生,但此时的催化剂表面有利于C3H6和O2的完全氧化反应,这是导致Cu/Al2O3催化剂选择性较低的根本原因.  相似文献   

2.
采用溶胶凝胶法和浸渍法制备10% Mn/Al2O3-TiO2催化剂,借助TPO、XRD、O2-TPD、Raman、XPS等手段,考察焙烧温度(450~650 ℃)对催化剂结构以及氧化NO性能的影响。TPO结果表明催化剂活性随焙烧温度的升高先增后减,其中焙烧温度为550 ℃时催化剂活性最好。XPS结果显示随着焙烧温度的升高(450~550 ℃),催化剂表面Mn3+的含量逐渐升高,与催化剂活性的强弱成对应关系,并且催化剂晶格氧含量下降,而表面化学吸附氧从40.9%增加到64.8%。Raman分析显示550 ℃焙烧时,催化剂表面存在丰富的Mn2O3活性物种,并且O2-TPD分析也表明随着焙烧温度的升高,晶格氧向表面化学吸附氧流动,提高了化学吸附态氧物种的含量。这些结果表明Mn2O3可能是NO氧化起主要作用的活性Mn物种,释放更多的表面化学吸附氧物种,将有助于促进NO的催化氧化。  相似文献   

3.
采用溶胶-凝胶法和浸渍法制备Cr/Al_2O_3-TiO_2催化剂,在考察不同Cr负载量的基础上,研究不同金属负载与焙烧温度对Cr/Al_2O_3-TiO_2催化剂结构与性能影响。程序升温氧化(TPO)结果表明,当Cr负载量为10%(w/w)时具有较好的催化活性;不同金属负载Cr/Al_2O_3-TiO_2时,负载Co及在焙烧温度为550℃时催化剂具有较好的活性。通过程序升温还原(H_2-TPR)表征发现,Co的负载使催化剂的低温氧化还原能力逐渐提高,表明Co-Cr具有较好的协同催化作用。X射线光电子能谱(XPS)表征表明,Co增加了Cr~(6+)和表面吸附氧(O_β)含量,随着焙烧温度的升高(450~550℃),晶格氧不断向催化剂表面流动,表面化学吸附氧O_β比例逐渐增加,导致催化活性不断升高,说明Cr~(6+)和O_β是催化氧化NO的重要活性物种。  相似文献   

4.
以Al_2O_3为载体,Fe、Mn为活性组分,采用浸渍法制备了Mn-Fe/Al_2O_3催化剂,研究了Mn-Fe/Al_2O_3催化剂的低温脱硝性能.实验结果表明,Fe负载量为7%时,7Fe/Al_2O_3催化剂显示出较佳的低温脱硝性能;添加Mn能明显改变7Fe/Al_2O_3催化剂低温脱硝性能,其中当Mn/Fe质量比为11∶7时,11Mn7Fe/Al_2O_3催化剂获得最佳低温脱硝效率.对催化剂的表征结果表明,比表面积和孔径的大小不是决定催化剂性能高低的主要因素;Mn O2和Fe2O3在x Mn7Fe/Al_2O_3催化剂中具有较强的相互作用,影响活性组分微观晶体结构,改善活性组分分散程度,从而提高了催化剂的低温脱硝性能;Fe的添加使催化剂表面酸性位点数目增加,从而提高7Fe/Al_2O_3催化剂的低温脱硝效率.添加Mn不仅增多了11Mn7Fe/Al_2O_3催化剂表面酸性位点数目增加,而且使催化剂表面出现新的中强性酸位点,使其低温脱硝效率进一步提高;经过详细分析,结果表明表面吸附氧Oβ、Mn4+和Fe3+的含量较高是11Mn7Fe/Al_2O_3催化剂脱硝活性较高的主要原因.  相似文献   

5.
微乳法合成可控粒径纳米Pt/Al2O3电催化CO氧化的尺寸效应   总被引:1,自引:0,他引:1  
采用微乳法室温下合成了粒径可控Pt/Al2O3催化剂(1~10 nm), 以CO电催化氧化为探针反应考察了Pt微粒尺寸与催化反应性能之间的关系. 利用透射电镜(TEM), 扫描电镜(SEM), 循环伏安法(CV)等手段对催化剂进行表征, 结果表明催化剂性能与Pt粒径之间存在明显的尺寸效应, 催化剂存在最佳活性尺寸.  相似文献   

6.
KF/Al2O3催化下取代水杨醛与达米酮的反应   总被引:3,自引:0,他引:3  
取代水杨醛与5,5-二甲基-1,3-环己二酮(达米酮)在KF/Al2O3催化下反应生成一系列苯并吡喃的衍生物. 产物的结构通过红外光谱、核磁共振氢谱和元素分析进行表征, 并通过X单晶衍射分析进一步证实产物的结构.  相似文献   

7.
以γ-Al2O3为载体,采用等体积浸渍法,制备了不同K2CO3含量的Ni-Cu-Mn-K/Al2O3水煤气变换催化剂,采用低温N2吸附、XRD、TPD和TPR,考察了K2CO3含量对催化剂结构和性能的影响。结果表明:K2CO3的加入使催化剂的还原温度有所提高,适量的K2CO3能增加活性组分的电子密度,从而增强其给电子活化CO的能力,提高催化剂的活性。但过量的K2CO3使得催化剂比表面积和孔容降低,且导致催化剂对CO吸附过强,催化活性降低。当Ni-Cu-Mn-K/γ-Al2O3催化剂中K2CO3的添加量为7.5%时,且催化剂经530 ℃耐热15 h后,在350 ℃时水煤气变换反应中CO转化率达62.29%。  相似文献   

8.
固定n(Ce)/n(Zr)比为0.67/0.33,用共沉淀法制得一系列CeO2-ZrO2-Al2O3固溶体.采用这些固溶体作载体,以Fe2O3为活性组分,用浸渍法制备了一系列催化剂.BET结果显示,将适量Ce0.67Zr0.33O2引入到Al2O3载体中有助于催化剂保持较高的比表面积.TPR结果显示,载体中引入适量的Ce0.67Zr0.33O2可以改善催化剂的氧化还原性能.XRD结果表明,Fe2O3在CeO2-ZrO2-Al2O3载体上呈现出良好的分散状况,老化前后催化剂的晶相结构基本无明显变化.特别是当载体中m(Ce0.67Zr0.33O2)∶m(Al2O3)的值为1∶2时,Fe2O3/CeO2-ZrO2-Al2O3催化剂在甲烷催化燃烧中显示出最佳的催化性能和抗高温老化性能.  相似文献   

9.
以Al2O3为基质,添加ZrO2和La2O3,制成La2O3-ZrO2-Al2O3复合载体,然后采用SO42-进行改性,再负载上Cu2+,制备了铜基SO42-改性的复合载体催化剂(Cu/SO42-/La2O3-ZrO2-Al2O3)。考察了它在富氧条件下对丙烯选择还原NO的催化性能,并借助XRD、SEM、TG、Py-IR、NH3-TPD、FTIR和TPR等方法研究了Cu/SO42-/La2O3-ZrO2-Al2O3的结构和性能的关系。结果表明,ZrO2的加入主要有利于提高催化剂的低温活性;La2O3的加入则主要有利于提高催化剂的热稳定性和还原性能;SO42-能够与Zr形成螯合双配位结构,大幅度促使催化剂表面酸量增加并且酸性增强;因此,有效地提高了Cu/SO42-/La2O3-ZrO2-Al2O3在富氧条件下对丙烯选择还原NO的催化活性和水热稳定性。在无水条件下,Cu/SO42-/La2O3-ZrO2-Al2O3能使NO的最大转化率高达84.3%,即使在275 ℃ 10%水蒸气存在的情况下,仍能使NO的转化率高达81.2%。  相似文献   

10.
通过溶胶和超临界干燥方法制得了Fe2O3/Al2O3二元气凝胶,其比表面积和孔隙体积分别为246 m2·g-1和1.89 cm3·g-1,并具有较宽的孔径分布。以Fe2O3/Al2O3二元气凝胶作催化剂,通过甲烷催化裂解成功地合成了高质量的单壁纳米碳管。利用FESEM、TEM和HRTEM、Raman光谱等分析手段研究了反应温度对单壁纳米碳管生长的影响。结果表明在900 ℃时合成单壁纳米碳管的质量较高,并且合成的炭产物为毡状,该炭产物主要为高质量的单壁纳米碳管。  相似文献   

11.
Pt/Al2O3蜂窝状催化剂上NO选择性催化还原反应动力学研究   总被引:3,自引:0,他引:3  
采用多次涂层和浸渍法制备了蜂窝状Pt/Al2O3催化剂,并在高空速和大气体流量条件下对无梯度循环式反应器和积分反应器上催化剂的活性进行了比较。同时采用循环式反应器对动力学数据进行了测定。根据Langmuir-Hinshelwood模型和实验结果,推测了NO-C3H6-O2体系的SCR反应机理,并导出了NO和C3H6反应速率的数学表达式。据此所计算的理论模拟值能够与实验值很好地吻合。实验结果表明,氧气浓度对NO和C3H6的反应速率有明显的影响,二者均随着氧浓度c (O2)的增加达到峰值,再增加氧气浓度时,C3H6的反应速率r(C3H6)保持不变,而NO反应速率r (NO)却下降,而且下降的程度随着温度的升高而加剧。同时,随着氧气浓度增加,r (NO)达到最大值时的温度亦随之下降。  相似文献   

12.
Pt/Al2O3和Pt/CeO2/Al2O3催化甲烷部分氧化制合成气反应   总被引:12,自引:0,他引:12  
研究了Pt/Al2O3和Pt/CeO2/Al2O3对甲烷部分氧化制合成气反应的催化活性,发现Pt/CeO2/Al2O3显示了更高的甲烷转化率和合成气选择性.用H2-TPR、H2-TPD、SEM-EDX和XRD等技术对催化剂进行了表征.CeO2和Pt相互作用促进Pt在催化剂表面的分散,抑制Pt在催化剂表面的迁移;降低了催化剂的燃烧活性,提高了催化剂的部分氧化活性和选择性,可避免因催化剂床层局部温度过高而导致催化剂活性下降或失活,提高了催化剂的稳定性.同时,CeO2通过促进水汽变换反应使反应体系迅速达到平衡,提高了催化剂对H2的选择性.  相似文献   

13.
主要考察了NO2对Cu/SAPO-34分子筛催化剂在整个温度范围内(100-500°C)NH3选择性催化还原(SCR)NO性能的影响.研究所使用样品为新鲜Cu/SAPO-34催化剂在750°C下水热处理4 h的稳定期样品.通过X射线衍射(XRD)和扫描电子显微镜(SEM)对样品的结构以及形貌进行表征,采用SCR活性评价、动力学实验以及原位漫反射傅里叶变换红外光谱(in situ-DRIFTS)表征催化剂的性能以及催化剂表面物种的变化.活性评价实验结果表明,NO2会抑制催化剂的低温(100-280°C)活性,但其存在会提高催化剂的高温(280°C以上)活性.与此同时,随着反应物中NO/NO2的摩尔比例减少,由于NH4NO3物种的分解,副产物(N2O)的浓度增大.动力学结果表明,Cu/SAPO-34催化剂上快速SCR反应的表观活化能(Ea=64.02 kJ?mol-1)比标准SCR反应的表观活化能(Ea=48.00 kJ?mol-1)更大.In situ-DRIFTS实验结果表明NO比NO2更容易在催化剂表面形成硝酸盐,并且NO2更容易与吸附在Br?nsted酸性位上的NH3物种反应生成NH4NO3.低温下,催化剂表面的NH4NO3物种会覆盖SCR反应的活性位,造成活性降低,但在高温时,形成的NH4NO3物种一部分会被NO还原为N2,而另一部分会直接热分解为N2O,造成催化剂的选择性降低.  相似文献   

14.
测定了含ZrO2的Rh/γ-Al2O3催化剂上NO+C2H4和NO+C2H4+O2的反应活性,并应用TPR、XRD、BET比表面等表征了ZrO2的加入方式和晶型对Rh/γ-Al2O3催化剂活性和结构的影响。结果表明,ZrO2的加入一定程度地抑制了Rh3+与γ-Al2O3之间的相互作用和γ-Al2O3的相变,提高了催化剂的热稳定性,明显提高了850℃老化样品的NO+C2H4反应活性。对于NO+C2H4+O2反应,含ZrO2样品的选择还原活性却较低,表明反应机理不同,而且ZrO2对C2H4的深度氧化有促进作用,但老化后活性下降幅度比不含ZrO2的样品小。  相似文献   

15.
制备了Al2O3负载Pt单金属催化剂和负载Pt-Cu双金属催化剂,比较了二者不同还原温度对其催化CCl4氢化脱氯反应性能的影响。 单金属Pt催化剂上主要生成CHCl3,而双金属Pt-Cu催化剂上产物随催化剂制备时的还原温度不同而异,当催化剂经400 ℃用H2还原后产物主要为CHCl3,而当催化剂经800 ℃用H2还原后产物主要为CCl2CCl2。 由于CCl4氢化反应是强放热反应,催化剂表面局部过热使得在反应中生成的C2等产物聚合结焦,覆盖了催化剂的活性中心,导致催化剂失活。 因此,通过加入甲醇作为稀释剂以带走部分反应热可提高催化剂的稳定性。 同时也降低了CHCl3的选择性,提高了CCl2CCl2的选择性。  相似文献   

16.
异丁烷在Pt-Sn-K/Al2O3上的脱氢反应   总被引:3,自引:0,他引:3  
负载催化剂;异丁烷在Pt-Sn-K/Al2O3上的脱氢反应  相似文献   

17.
This study investigated the selective catalytic reduction (SCR) of nitrogen oxides (NOx) with hydrocarbon in the presence of excess oxygen using various composition ratios of Pt/Al2O3, Rh/Al2O3 catalyst mixtures. The composition ratios were 1:1, 1:2, 2:1, 1:3 and 3:1 of 1 wt% Pt/Al2O3 and Rh/Al2O3, which are known to exhibit efficient NOx reduction at low and high temperatures among the noble metal catalysts. Experiments conducted on a single reductant revealed that more efficient NOx conversion could be obtained when Pt/Al2O3 and Rh/Al2O3 were mixed at a ratio of 3:1, rather than 1:1 or 1:3. In a single reductant condition, C3H6 800 ppm (2400 ppmC1) and 400 ppm (1200 ppmC1) exhibited 50% and 38% NOx conversion efficiency at 200°C, respectively. However, NOx conversion efficiency gradually decreased when temperatures were increased above 250°C. With regard to Pt/Al2O3 and Rh/Al2O3 ratio, higher ratios of Rh/Al2O3 activated this Pt+Rh/Al2O3 catalyst in the high temperature range.  相似文献   

18.
Catalytic Combustion of Methane over MnOx/ZrO2-Al2O3 Catalysts   总被引:4,自引:0,他引:4  
MnOx/Al2O3 and MnOx/ZrO2-Al2O3 catalysts were prepared by incipient wetness impregnation of Mn(CH3COO)2 on the corresponding supports, followed by the characterization using X-ray diffraction (XRD). temperature programmed reduction (TPR) and BET surface area techniques. The result shows the BET surface area of ZrO2-Al2O3 is lower than that of Al2O3 due to the loading of ZrO2.However tile resulted MnOx/ZrO2-Al2O3 catalyst exhibits higher activity for methane combustion than MnOx/Al2O3, because the addition of ZrO2 onto Al2O3 is beneficial for the dispersion of Mn species and the improvement of the lattice oxygen activity in MnOx. subsequently the activation of methane during combustion. The optimum loading of Zr in MnOx/ZrO2-Al2O3 is in the range of 5%-10% correlated with the calcination temperatures of catalyst supports.  相似文献   

19.
The novel sol-gel SnO2/Al2O3 catalysts for selective catalytic reduction NO by propene under lean burn condition were investigated. The results showed thatthe maximum NO conversion was 82% on the SnO2/Al2O3 (5%Sn) catalyst, and the presence of H20 and SO2 improved the catalytic activity at low temperature. The catalytic activity of NO2 reduction by propene is much higher than that of NO at the entire temperature range, and the maximum NO2 conversion reached nearly 100% around the temperature 425℃.  相似文献   

20.
考察了反应温度、气体空速和进料中CH4:O2比值对Mo2C/Al2O3催化的POM反应制合成气的影响.结果发现较高的温度具有较高的甲烷转化率、CO和H2的选择性;而在较低的温度下,对CO的选择性比对H2的影响更大.反应气体的空速较小时对于甲烷的转化率、CO和H2的选择性是有利的;而在较高的气体空速下,氢气的选择性则更低.进料中CH4:O2比值稍高于2:1时有利于获得高的甲烷转化率、CO和H2的选择性.并且还可以增加催化剂的稳定性.当CH4:O2比值低于2:1时.甲烷转化率、CO和H2选择性随反应的进行急剧下降.而当此比值调整到高于2:1时.转化率和选择件都可以得到恢复。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号