首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By introducing a direct scalar coupling between the spinor field and the Higgs field, we are able to show that in the non-abelian case, a spinor monopole bound state solution exists. The distribution of the spinor field in the solution concentrates near the origin, which is unlike the shell distribution of the SLAC solution.  相似文献   

2.
Energetic instability is demonstrated for stationary nontopological soliton solutions of a self-coupled spinor field or a spinor field coupled to a real scalar field.  相似文献   

3.
We consider a system of minimally coupled nonlinear spinor and scalar fields within the scope of a plane-symmetric gravitational field. The gravitational field plays crucial role in the formation of soliton-like solutions, i.e., solutions with limited total energy, spin, and charge. The change of the sign of the scalar field energy density of the system in question realizes physically if and only if the scalar charge does not exceed some critical value. In case of spinor field no such restriction on its parameter occurs. The choice of spinor field nonlinearity leads to the elimination of scalar field contribution to the metric functions, but leaves its contribution to the total energy unaltered. The spinor field is more sensitive to the gravitational field than the scalar field.  相似文献   

4.
After reviewing the Lounesto spinor field classification, according to the bilinear covariants associated to a spinor field, we call attention and unravel some prominent features involving unexpected properties about spinor fields under such classification. In particular, we pithily focus on the new aspects — as well as current concrete possibilities. They mainly arise when we deal with some non-standard spinor fields concerning, in particular, their applications in physics.  相似文献   

5.
We obtain exact plane-symmetric solutions of the spinor field equations with a nonlinear term that is an arbitrary functions of the invariant and with the self-gravitational field taken into account. Conditions are formulated for which the initial system of Einstein's equation and the spinor field equations with a power-law nonlinearity have regular solutions with localized (negative) spinor field energy density: so-called soliton-like solutions. Exact solutions of the spinor field equations are also obtained in flat space—time in this case and it is shown that the initial system of equations does not have soliton-like solutions. Hence the self-gravitational field plays a crucial (regularizing) in soliton-like solutions of the nonlinear spinor field equations.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 63–68, August, 1995.  相似文献   

6.
Stationary thick brane solutions supported by two spinor fields are considered. Two spinor fields are used here to exclude the off-diagonal components of the energy-momentum tensor of the spinor fields. The trapping of a test scalar field on the brane is also considered.  相似文献   

7.
The specific behavior of spinor field in curve space-time with the exception of FRW model almost always gives rise to non-trivial non-diagonal components of the energy-momentum tensor. This non-triviality of non-diagonal components of the energy-momentum tensor imposes some severe restrictions either on the spinor field or on the metric functions. In this paper within the scope of an anisotropic Bianchi type-I Universe we study the role of spinor field in the evolution of the Universe. It is found that there exist two possibilities. In one scenario the initially anisotropic Universe evolves into an isotropic one asymptotically, but in this case the spinor field itself undergoes some severe restrictions. In the second scenario the isotropization takes places almost at the beginning of the process.  相似文献   

8.
Within the scope of Bianchi type VI,VI0,V, III, I, LRSBI and FRW cosmological models we have studied the role of nonlinear spinor field on the evolution of the Universe and the spinor field itself. It was found that due to the presence of non-trivial non-diagonal components of the energy-momentum tensor of the spinor field in the anisotropic space-time, there occur some severe restrictions both on the metric functions and on the components of the spinor field. In this report we have considered a polynomial nonlinearity which is a function of invariants constructed from the bilinear spinor forms. It is found that in case of a Bianchi type-VI space-time, depending of the sign of self-coupling constants, the model allows either late time acceleration or oscillatory mode of evolution. In case of a Bianchi VI0 type space-time due to the specific behavior of the spinor field we have two different scenarios. In one case the invariants constructed from bilinear spinor forms become trivial, thus giving rise to a massless and linear spinor field Lagrangian. This case is equivalent to the vacuum solution of the Bianchi VI0 type space-time. The second case allows non-vanishing massive and nonlinear terms and depending on the sign of coupling constants gives rise to accelerating mode of expansion or the one that after obtaining some maximum value contracts and ends in big crunch, consequently generating space-time singularity. In case of a Bianchi type-V model there occur two possibilities. In one case we found that the metric functions are similar to each other. In this case the Universe expands with acceleration if the self-coupling constant is taken to be a positive one, whereas a negative coupling constant gives rise to a cyclic or periodic solution. In the second case the spinor mass and the spinor field nonlinearity vanish and the Universe expands linearly in time. In case of a Bianchi type-III model the space-time remains locally rotationally symmetric all the time, though the isotropy of space-time can be attained for a large proportionality constant. As far as evolution is concerned, depending on the sign of coupling constant the model allows both accelerated and oscillatory mode of expansion. A negative coupling constant leads to an oscillatory mode of expansion, whereas a positive coupling constant generates expanding Universe with late time acceleration. Both deceleration parameter and EoS parameter in this case vary with time and are in agreement with modern concept of space-time evolution. In case of a Bianchi type-I space-time the non-diagonal components lead to three different possibilities. In case of a full BI space-time we find that the spinor field nonlinearity and the massive term vanish, hence the spinor field Lagrangian becomes massless and linear. In two other cases the space-time evolves into either LRSBI or FRW Universe. If we consider a locally rotationally symmetric BI(LRSBI) model, neither the mass term nor the spinor field nonlinearity vanishes. In this case depending on the sign of coupling constant we have either late time accelerated mode of expansion or oscillatory mode of evolution. In this case for an expanding Universe we have asymptotical isotropization. Finally, in case of a FRW model neither the mass term nor the spinor field nonlinearity vanishes. Like in LRSBI case we have either late time acceleration or cyclic mode of evolution. These findings allow us to conclude that the spinor field is very sensitive to the gravitational one.  相似文献   

9.
We apply Campolattaro's spinor representation of the electromagnetic field to noncommutative spaces. The spinor representation of the (self-dual) electromagnetic field on noncommutative spaces is obtained.  相似文献   

10.
Within the scope of Bianchi type-III spacetime we study the role of spinor field on the evolution of the Universe as well as the influence of gravity on the spinor field. In doing so we have considered a polynomial type of nonlinearity. In this case the spacetime remains locally rotationally symmetric and anisotropic all the time. It is found that depending on the sign of nonlinearity the models allows both accelerated and oscillatory modes of expansion. The non-diagonal components of energy-momentum tensor though impose some restrictions on metric functions and components of spinor field, unlike Bianchi type I, V and V I 0 cases, they do not lead to vanishing mass and nonlinear terms of the spinor field.  相似文献   

11.
We show that in the background of a stationary and axisymmetric black hole, there is a particular spinor field whose “conserved current” interpolates between the null Killing vector on the horizon and the time Killing vector at the spatial infinity. The spinor field only needs to satisfy a very general and simple constraint.  相似文献   

12.
Flagpole and flag-dipole spinors are particular classes of spinor fields that has been recently used in different branches of theoretical physics. In this paper, we study the possibility and consequences of these spinor fields to induce an underlying fluid flow structure in the background of Kerr spacetimes. We show that flag-dipole spinor fields are solutions of the equations of motion in this context. To our knowledge, this is the second time that this class of spinor field appears as a physical solution, the first one occurring as a solution of the Dirac equation in ESK gravities.  相似文献   

13.
Fractional derivatives have been known since the time of Leibniz and have been used in various branches of physics. The present paper shows how they can be used to generate a spinor field, much as the gradient operator generates a vector field. These spinor fields are zero kinetic energy solutions to the Dirac equation.  相似文献   

14.
A chiral spinor superfield, with an appropriate gauge invariance, describes a scalar multiplet consisting of a scalar, an antisymmetric-tensor gauge field, a Weyl spinor, and no auxiliary fields.  相似文献   

15.
A study is made of the dynamics of a self-gravitating spinor field in a space with curvature and nonmetricity. It is shown that the nonmetricity of the space-time may induce a vector nonlinearity of cubic type in the equation of the spinor field. Also possible is the opposite effect in which such a nonlinearity of the spinor equation is compensated by the influence of the nonmetricity of space-time.Translated from Izvestiya Vysshikh Uchebnykh. Zavedenii, Fizika, No. 6, pp. 52–55, June, 1980.  相似文献   

16.
A covariant theory is constructed of a spinor field in a space which is represented by the local topological product of a space Xn and a space of values of a geometrical object η. The covariant nonlinear spinor field theory constructed preserves the principles of the theory of the unified field and is compatible with the theory of gauge fields.  相似文献   

17.
We consider toy cosmological models in which a classical, homogeneous, spinor field provides a dominant or sub-dominant contribution to the energy-momentum tensor of a flat Friedmann-Robertson-Walker universe. We find that, if such a field were to exist, appropriate choices of the spinor self-interaction would generate a rich variety of behaviors, quite different from their widely studied scalar field counterparts. We first discuss solutions that incorporate a stage of cosmic inflation and estimate the primordial spectrum of density perturbations seeded during such a stage. Inflation driven by a spinor field turns out to be unappealing as it leads to a blue spectrum of perturbations and requires considerable fine-tuning of parameters. We next find that, for simple, quartic spinor self-interactions, non-singular cyclic cosmologies exist with reasonable parameter choices. These solutions might eventually be incorporated into a successful past- and future-eternal cosmological model free of singularities. In an Appendix, we discuss the classical treatment of spinors and argue that certain quantum systems might be approximated in terms of such fields.  相似文献   

18.
We give a formulation of classical spinor electrodynamics in terms of gauge-invariant quantities. The set of invariants consists of bilinear combinations of spinor fields (currents), a real-valued covector field, and a complex scalar field of modulus one. The presented result is a first step towards formulating quantum electrodynamics in terms of gauge-invariant fields.  相似文献   

19.
An elementary method of conctructing a spinor from vectors satisfying constraint conditions is proposed. We consider orthonormal triad and tetrad as an orientable physical object and introduce parameter representations of them, in terms of the Euler angles and the pseudo-Euler angles. Having determined the transformation property of the parameters, we set up the spinor determining equation. This equation is solved. The solution (spinor) contains four arbitrary complex constants, in 3 + 1 dimensional space. Using the proposed method, we prove the spinor reconstruction theorem, i.e. the original Dirac spinor can be reconstructed from seven of the sixteen hermitian bilinear forms, except the overall phase factor (the gauge freedom of the 1st kind). The energy density of the spinor field is written in terms of currents and their space derivatives.  相似文献   

20.
The derivative coupling of massless pseudoscalar neutral particles with a charged spinor field in two-dimensional space-time is reduced to a self-interacting spinor field and a free pseudoscalar field.More generally, it is shown that any given local field theory with a conserved vector current and without massless particles can be extended to a local theory with an additional pseudoscalar field and with aU 1×U 1 symmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号