首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
This paper represents a continuation of the author's previous work which deals with an analytical model of thermal stresses which originate during a cooling process of an anisotropic solid elastic continuum. This continuum consists of anisotropic spherical particles which are periodically distributed in an anisotropic infinite matrix. The infinite matrix is imaginarily divided into identical cubic cells with central particles. This multi-particle–matrix system represents a model system which is applicable to two-component materials of the precipitate–matrix type. The thermal stresses, which originate due to different thermal expansion coefficients of components of the model system, are determined within the cubic cell. The analytical modelling results from fundamental equations of continuum mechanics for solid elastic continuum (Cauchy's, compatibility and equilibrium equations, Hooke's law). This paper presents suitable mathematical procedures which are applied to the fundamental equations. These mathematical procedures lead to such final formulae for the thermal stresses which are relatively simple in comparison with the final formulae presented in the author's previous work which are extremely extensive. Using these new final formulae, the numerical determination of the thermal stresses in real two-component materials with anisotropic components is not time-consuming.  相似文献   

2.
Based on the fundamental equations of the mechanics of solid continuum, the paper employs an analytical model for determination of elastic thermal stresses in isotropic continuum represented by periodically distributed spherical particles with different distributions in an infinite matrix, imaginarily divided into identical cells with dimensions equal to inter-particle distances, containing a central spherical particle with or without a spherical envelope on the particle surface. Consequently, the multi-particle-(envelope)- matrix system, as a model system regarding the analytical modelling, is applicable to four types of multi-phase materials. As functions of the particle volume fraction v, the inter-particle distances dl, d2, d3 along three mutually per- pendicular axes, and the particle and envelope radii, R1 and R2, respectively, the thermal stresses within the cell, are originated during a cooling process as a consequence of the difference in thermal expansion coefficients of phases rep- resented by the matrix, envelope and particle. Analytical-(experimental)-computational lifetime prediction methods for multi-phase materials are proposed, which can be used in engineering with appropriate values of parameters of real multi-phase materials.  相似文献   

3.
The paper deals with analytical models of the elastic energy gradient Wsq representing an energy barrier. The energy barrier is a surface integral of the elastic energy density Wq. The elastic energy density is induced by thermal stresses acting in an isotropic spherical particle (q = p) with the radius R and in a cubic cell of an isotropic matrix (q = m). The spherical particle and the matrix are components of a multi-particle-matrix system representing a model system applicable to a real two-component material of a precipitation-matrix type. The multi-particle-matrix system thus consists of periodically distributed isotropic spherical particles and an isotropic infinite matrix. The infinite matrix is imaginarily divided into identical cubic cells with a central spherical particle in each of the cubic cells. The dimension d of the cubic cell then corresponds to an inter-particle distance. The parameters R, d along with the particle volume fraction v = v(R, d) as a function of R, d represent micro- structural characteristics of a real two-component material. The thermal stresses are investigated within the cubic cell, and accordingly are functions of the microstructural charac- teristics. The thermal stresses originate during a cooling pro- cess as a consequence of the difference am - ap in thermal expansion coefficients between the matrix and the particle, am and ap, respectively. The energy barrier Wsq is used for the determination of the thermal-stress induced strengthening aq. The strengthening represents resistance against com- pressive or tensile mechanical loading for am - ap 〉 0 or am - ap 〈 0. respectively.  相似文献   

4.
Thermal-stress induced phenomena in two-component material: part I   总被引:1,自引:0,他引:1  
The paper deals with analytical fracture mechanics to consider elastic thermal stresses acting in an isotropic multi-particle-matrix system. The multi-particle-matrix system consists of periodically distributed spherical particles in an infinite matrix. The thermal stresses originate during a cooling process as a consequence of the difference αm - αp in thermal expansion coefficients between the matrix and the particle, αm and αp, respectively. The multi-particle-matrix system thus represents a model system applicable to a real two-component material of a precipitation-matrix type. The infinite matrix is imaginarily divided into identical cubic cells. Each of the cubic cells with the dimension d contains a central spherical particle with the radius R, where d thus corresponds to inter-particle distance. The parameters R, d along with the particle volume fraction v = v(R, d) as a function of R, d represent microstructural characteristics of a twocomponent material. The thermal stresses are investigated within the cubic cell, and accordingly are functions of the microstructural characteristics. The analytical fracture mechanics includes an analytical analysis of the crack initiation and consequently the crack propagation both considered for the spherical particle (q = p) and the cell matrix (q = m). The analytical analysis is based on the determination of the curve integral Wcq of the thermal-stress induced elastic energy density Wq. The crack initiation is represented by the determination of the critical particle radius Rqc = Rqc(V). Formulae for Rqc are valid for any two-component mate- rial of a precipitate-matrix type. The crack propagation for R 〉 Rqc is represented by the determination of the function fq describing a shape of the crack in a plane perpendicular  相似文献   

5.
This paper proposes a nested dual-stage homogenization method for developing microstructure based continuum elasto-viscoplastic models for large secondary dendrite arm spacing or SDAS cast aluminum alloys. Microstructures of these alloys are characterized by extremely inhomogeneous distribution of inclusions along the dendrite cell boundaries. Traditional single-step homogenization methods are not suitable for this type of microstructure due to the size of the representative volume element (RVE) and the associated computations required for micromechanical analyses. To circumvent this limitation, two distinct RVE’s or statistically equivalent RVE’s are identified, corresponding to the inherent scales of inhomogeneity in the microstructure. The homogenization is performed in multiple stages for each of the RVE’s identified. The macroscopic behavior is described by a rate-dependent, anisotropic homogenization based continuum plasticity (HCP) model. Anisotropy and viscoplastic parameters in the HCP model are calibrated from homogenization of micro-variables for the different RVE’s. These parameters are dependent on microstructural features such as morphology and distribution of different phases. The uniqueness of the nested two-stage homogenization is that it enables evaluation of the overall homogenized model parameters of the cast alloy from limited experimental data, but also material parameters of constituents like inter-dendritic phase and pure aluminum matrix. The capabilities of the HCP model are demonstrated for a cast aluminum alloy AS7GU having a SDAS of 30 μm.  相似文献   

6.
Thermal stresses and shakedown in wheel/rail contact   总被引:1,自引:0,他引:1  
Summary  Sliding friction between railway wheels and rails results in considerable contact temperatures and gives rise to severe thermal stresses at the surfaces of the wheels and rails. An approximate analytical solution is presented for a line contact model. The increased bulk temperature of the wheel after a long period of constant operating conditions is also taken into account. The thermal stresses have to be superimposed on the mechanical contact stresses. They reduce the elastic limit of the wheel and rail, and yielding begins at lower mechanical loads. When residual stresses build up during the initial cycles of plastic deformation, the structure can carry higher loads with a purely elastic response in subsequent load cycles. This phenomenon is referred to as shakedown. Due to the distribution of temperature, the rail surface is generally subjected to higher stresses than the wheel surface. This can cause structural changes in the rail material and hence rail damage. Received 7 May 2002; accepted for publication 3 September 2002  相似文献   

7.
Exact solutions are derived for the problem of a two-dimensional, infinitely anisotropic, linear-elastic medium containing a periodic lattice of voids. The matrix material possesses either one infinitely soft, or one infinitely hard loading direction, which induces localized (singular) field configurations. The effective elastic moduli are computed as functions of the porosity in each case. Their dilute expansions feature half-integer powers of the porosity, which can be correlated to the localized field patterns. Statistical characterizations of the fields, such as their first moments and their histograms are provided, with particular emphasis on the singularities of the latter. The behavior of the system near the void close-packing fraction is also investigated. The results of this work shed light on corresponding results for strongly non-linear porous media, which have been obtained recently by means of the “second-order” homogenization method, and where the dilute estimates also exhibit fractional powers of the porosity.  相似文献   

8.
为了研究平面应变条件下各向异性材料中应力波传播的特点,利用各向异性弹性Hooke定律、 Tsai-Hill屈服准则、经典塑性流动理论,引入修正的物态方程计及高压下的体积压缩非线性,建立了平面应 变条件下正交各向异性复合材料的弹塑性本构关系,并且分析了二维问题中材料变形引起的主轴旋转及客 观应力率修正问题。最后采用动态显式有限元方法自行编写程序模拟某种纤维增强复合材料碰撞过程中平 面应力波的传播,模拟结果显示,在平面应变条件下应力波在该材料的传播过程中表现出明显的二维效应、各 向异性特点及弹塑性特点。  相似文献   

9.
A linear perturbation analysis is performed for a class of rate-dependent materials, such as the Johnson-Cook model, in which the rate contribution to the stress can be separated from that of the plastic strain and temperature and in which the temperature rises adiabatically. The analysis is facilitated by perturbing both the rate of momentum equation and the momentum equation. An identical material stability/instability criterion is deduced from the characteristic spectral equations for one-dimensional deformation, one-dimensional shearing, and general three-dimensional field equations, and thus shows that the instability derived here is a material constitutive instability.The criteria indicate that the materials become unstable once the thermal softening overcomes the strain hardening, regardless of the strain rate. The strain rate enters the criteria through its effects on the accumulated temperature and the current stress. Based on the criterion, the three-dimensional instability surface is established in the space of plastic strain, plastic strain rate, and temperature. Instability surface is shown as a material property and independent of deformation histories or modes. Both necking and shear banding are simulated to validate the excellent predictive capability of the criterion.  相似文献   

10.
The present investigation is concerned with the effect of rotation on an infinite circular cylinder subjected to certain boundary conditions.An analytical procedure for evaluation of thermal stresses,displacements,and temperature in rotating cylinder subjected to thermal load along the radius is presented.The dynamic thermal stresses in an infinite elastic cylinder of radius a due to a constant temperature applied to a variable portion of the curved surface while the rest of surface is maintained at zero temperature are discussed.Such situation can arise due to melting of insulating material deposited on the surface cylinder.A solution and numerical results are obtained for the stress components,displacement components,and temperature.The results obtained from the present semi-analytical method are in good agreement with those obtained by using the previously developed methods.  相似文献   

11.
12.
The present paper presents a general treatment of the transient thermoelastic stresses in a rotating nonhomogeneous anisotropic solid under compressive initial stress. The system of fundamental equations is solved by means of a boundary element method (BEM) and the numerical calculations are carried out for the temperature, displacement components and stress components. The results indicate that the effects of inhomogeneity and initial stress are very pronounced.  相似文献   

13.
In the present paper, the behavior of an interface crack for a homogeneous orthotropic strip sandwiched between two different functionally graded orthotropic materials subjected to thermal and mechanical loading is considered. It is assumed that interface crack is partly insulated, and the temperature drop across the crack surfaces is the result of the thermal resistance due to the heat conduction through the crack region. The elastic properties of the material are assumed to vary continuously along the thickness direction. The principal directions of orthotropy are parallel and perpendicular to the crack orientation. The complicated mixed boundary problems of equations of heat conduction and elasticity are converted analytically into singular integral equations, which are solved numerically. The main objective of the paper is to study the effects of material nonhomogeneity parameters and the dimensionless thermal resistance on the thermal stress intensity factors for the purpose of gaining better understanding of the thermal behavior of graded layer.  相似文献   

14.
We present explicit expression of the polarization vector for surface waves and slip waves in an anisotropic elastic half-space, and Stoneley waves and interfacial slip waves in two dissimilar anisotropic elastic half-spaces. An unexpected result is that, in the case of interfacial slip waves, the polarization vector for the material in the half-space x2≥0x20 does not depend explicitly on the material property in the half-space x2≤0x20. It depends on the material property in the half-space x2≤0x20 implicitly through the interfacial slip wave speed υυ. The same is true for the polarization vector for the material in the half-space x2≤0x20.  相似文献   

15.
The influence of the polygonal geometry of the restricted slip-associated yield surface on the distribution of stresses over a polycrystalline aggregate is examined. The vertices of the yield surface (stress states corresponding to polyslip) are grouped according to symmetries imposed by crystal structure. A measure of coaxiality between crystal stresses and yield surface vertex stresses is used to quantify the proximity of the stress in each crystal to a yield surface vertex. It is shown that for prescribed stress states, crystal stresses align more closely with certain families of vertices than with others and this relation between crystal and vertex stresses is found to depend on crystallographic fibers. Using this information, the stress distributions from finite element simulations of face centered cubic polycrystals are analyzed for different stress states ranging from uniaxial to balanced biaxial. Over the fundamental region of orientations, the propensity for the stress to align with a vertex is demonstrated. Further, the stresses in elements contributing to certain crystallographic fibers are shown to favor the vertex families aligned with those fibers. The implications of these results on mechanical behaviors, especially with respect to those observed in diffraction experiments, are discussed.  相似文献   

16.
We study the plane deformation of an elastic composite system made up of an anisotropic elliptical inclusion and an anisotropic foreign matrix surrounding the inclusion. In order to capture the influence of interface energy on the local elastic field as the size of the inclusion approaches the nanoscale, we refer to the Gurtin-Murdoch model of interface elasticity to describe the inclusion-matrix interface as an imaginary and extremely stiff but zero-thickness layer of a finite stretching modulus. As opposed to isotropic cases in which the effects of interface elasticity are usually assumed to be uniform (described by a constant interface stretching modulus for the entire interface), the anisotropic case considered here necessitates non-uniform effects of interface elasticity (described by a non-constant interface stretching modulus), because the bulk surrounding the interface is anisotropic. To this end, we treat the interface stretching modulus of the anisotropic composite system as a variable on the interface curve depending on the specific tangential direction of the interface. We then devise a unified analytic procedure to determine the full stress field in the inclusion and matrix, which is applicable to the arbitrary orientation and aspect ratio of the inclusion, an arbitrarily variable interface modulus, and an arbitrary uniform external loading applied remotely. The non-uniform interface effects on the external loading-induced stress distribution near the interface are explored via a group of numerical examples. It is demonstrated that whether the nonuniformity of the interface effects has a significant effect on the stress field around the inclusion mainly depends on the direction of the external loading and the aspect ratio of the inclusion.  相似文献   

17.
In this paper, a generalized anisotropic hardening rule based on the Mroz multi-yield-surface model for pressure insensitive and sensitive materials is derived. The evolution equation for the active yield surface with reference to the memory yield surface is obtained by considering the continuous expansion of the active yield surface during the unloading/reloading process. The incremental constitutive relation based on the associated flow rule is then derived for a general yield function for pressure insensitive and sensitive materials. Detailed incremental constitutive relations for materials based on the Mises yield function, the Hill quadratic anisotropic yield function and the Drucker–Prager yield function are derived as the special cases. The closed-form solutions for one-dimensional stress–plastic strain curves are also derived and plotted for materials under cyclic loading conditions based on the three yield functions. In addition, the closed-form solutions for one-dimensional stress–plastic strain curves for materials based on the isotropic Cazacu–Barlat yield function under cyclic loading conditions are summarized and presented. For materials based on the Mises and the Hill anisotropic yield functions, the stress–plastic strain curves show closed hysteresis loops under uniaxial cyclic loading conditions and the Masing hypothesis is applicable. For materials based on the Drucker–Prager and Cazacu–Barlat yield functions, the stress–plastic strain curves do not close and show the ratcheting effect under uniaxial cyclic loading conditions. The ratcheting effect is due to different strain ranges for a given stress range for the unloading and reloading processes. With these closed-form solutions, the important effects of the yield surface geometry on the cyclic plastic behavior due to the pressure-sensitive yielding or the unsymmetric behavior in tension and compression can be shown unambiguously. The closed form solutions for the Drucker–Prager and Cazacu–Barlat yield functions with the associated flow rule also suggest that a more general anisotropic hardening theory needs to be developed to address the ratcheting effects for a given stress range.  相似文献   

18.
The paper addresses the problem of calculation of the local stress field and effective elastic properties of a unidirectional fiber reinforced composite with anisotropic constituents. For this aim, the representative unit cell approach has been utilized. The micro geometry of the composite is modeled by a periodic structure with a unit cell containing multiple circular fibers. The number of fibers is sufficient to account for the micro structure statistics of composite. A new method based on the multipole expansion technique is developed to obtain the exact series solution for the micro stress field. The method combines the principle of superposition, technique of complex potentials and some new results in the theory of special functions. A proper choice of potentials and new results for their series expansions allow one to reduce the boundary-value problem for the multiple-connected domain to an ordinary, well-posed set of linear algebraic equations. This reduction provides high numerical efficiency of the developed method. Exact expressions for the components of the effective stiffness tensor have been obtained by analytical averaging of the strain and stress fields.  相似文献   

19.
A two-dimensional model has been developed for thermal stresses, elastic strains, creep strains, and creep energy density at the interfaces of short and long trilayer assemblies under both plane stress and plane strain conditions. Both linear (viscous) and non-linear creep constitutive behavior under static and cyclic thermal loading can be modeled for all layers. Interfacial stresses and strains are approximated using a combination of exact elasticity solutions and elementary strength of materials theories. Partial differential equations are linearized through a simple finite difference discretization procedure. The approach is mathematically straightforward and can be extended to include plastic behavior and problems involving external loads and a variety of geometries. The model can provide input data for thermal fatigue life prediction in solder or adhesive joints. For a typical solder joint, it is demonstrated that the predicted cyclic stress–strain hysteresis shows shakedown and a rapid stabilization of the creep energy dissipation per cycle in agreement with the predictions of finite element analysis.  相似文献   

20.
A general model for predicting the total residual stresses generated during filling and cooling stages of injection-molded parts has been developed. The model takes into account the phenomena associated with non-isothermal stress relaxation. The main hypothesis in our approach is to use the kinematics of a generalized Newtonian fluid at the end of the filling stage as the initial state for the calculation of residual flow stresses. These stresses are calculated using a single integral rheological model (Wagner model). The calculation of stresses developed during the cooling stage is based on a thermoviscoelastic model with structural relaxation. Illustrative results emphasizing the effect of both the melt temperature and the flow rate during the filling stage are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号