首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
1H Fast Field Cycling NMR (FFC-NMR) relaxometry is proposed as a powerful method to investigate tumour stroma in vivo upon the administration of a Gd-based contrast agent. To perform this study, an FFC-NMR equipment endowed with a wide bore magnet was used for the acquisition of Nuclear Magnetic Resonance Dispersion profiles on healthy muscle and tumour tissue in living mice. At magnetic field strengths < of ca. 1 MHz, the differences in the relaxation rates of the intra and extracellular compartment become of the same order of magnitude of the exchange rate across the cellular membranes. Under this condition, the water exchange rate between the two compartments yields to a biexponential magnetization recovery that can be analysed by fitting the experimental data with the two-Site eXchange (2SX) model. Using this model, it was possible to obtain, for the two compartments, both relaxation properties and water kinetic constants for water exchange across cell membranes. The method allowed us to determine the effect of the “matrix” on the water proton relaxation times and, in turn, to get some insights of the composition of this compartment, till now, largely unknown.  相似文献   

2.
Simulation of the hydration of Na+ and K+ cations in dilute solution was performed by the Monte Carlo method. A novel approach to structural analysis of hydration shells of ions was developed. Specific sets of coordination polyhedra formed by water molecules of the first coordination sphere were found. Structural and energy characteristics of hydration were calculated. The effect of Na+ and K+ cations on the structure of the network of H-bonds and mobility of water molecules in hydration shells was studied. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 852–857, May, 1999.  相似文献   

3.
The high potential for intercalations by water and various guest molecules is induced by the exchangeable cation inside Ca2+–Montmorillonite gallery. XRD peak for Mon at 2θ = 6.04° (d 001 = 1.462 nm) shows the structural effect on the clay gallery influenced by the intercalated water layers. Further increases in the gallery height are observed with the intercalation of octadecyl ammonium cations in OMON (d 001 = 1.840 nm) and ENR-50 matrix chains in CENR-50 (d 001 = 1.954 nm). DSC studies on the other hand reveal the thermal behaviors of intercalated molecules that are linked to the exchangeable cations. The endothermic of Ca2+–Montmorillonite (H Mon = 356.3 J/g) in low temperature range (30–100 °C) indicates the removal of free water and hydrogen bonded water molecules, while the endothermic around 150 °C is related to the induced skeletal layer of water within Ca2+–Montmorillonite. The OMON endothermic (H OMON = 47.0 J/g, T m = 36.94 °C) tells that cation exchange had modified the water structures and content inside the renewed clay. The intercalation of ENR-50 chains into OMON gallery reveals two endothermic with the T m1 and T m2 are at 86.24 and 113.80 °C, respectively. These T ms confirm that the alkyl chain segment on octadecyl ammonium cation occupy the OMON interlayer space.  相似文献   

4.
This paper studies the formation of a stable anion pair as a result of cluster interactions with water molecules (the number of molecules n=4, 6, 8, and 14). The hydration shells of the clusters obtained in a preliminary calculation are destructed to form closed chains of properly oriented water molecules in the space between the anions. The type of the resulting structure depends on the number of shared water molecules. The character of stabilization of the anion pair, determined by calculating different energy terms, also changes as n increases. The cyclic structures obtained in the region of the anion pair differ considerably from the structure of isolated Cl (H2O)n clusters and that of the aqueous solution of NaCl. The capture of water molecules by the anion pair is manifested in the nucleation of industrial steam. Institute of Thermal Physics, Ural Branch, Russian Academy of Sciences. Translated fromZhurnal Strukturnoi Khimii, Vol. 37, No. 2, pp. 289–298, March–April, 1996. Translated by L. Smolina  相似文献   

5.
The hydration of mesityl oxide (MOx) was investigated through a sequential quantum mechanics/molecular mechanics approach. Emphasis was placed on the analysis of the role played by water in the MOx synanti equilibrium and the electronic absorption spectrum. Results for the structure of the MOx–water solution, free energy of solvation and polarization effects are also reported. Our main conclusion was that in gas-phase and in low-polarity solvents, the MOx exists dominantly in syn-form and in aqueous solution in anti-form. This conclusion was supported by Gibbs free energy calculations in gas phase and in-water by quantum mechanical calculations with polarizable continuum model and thermodynamic perturbation theory in Monte Carlo simulations using a polarized MOx model. The consideration of the in-water polarization of the MOx is very important to correctly describe the solute–solvent electrostatic interaction. Our best estimate for the shift of the π–π* transition energy of MOx, when it changes from gas-phase to water solvent, shows a red-shift of −2,520 ± 90 cm−1, which is only 110 cm−1 (0.014 eV) below the experimental extrapolation of −2,410 ± 90 cm−1. This red-shift of around −2,500 cm−1 can be divided in two distinct and opposite contributions. One contribution is related to the syn → anti conformational change leading to a blue-shift of ~1,700 cm−1. Other contribution is the solvent effect on the electronic structure of the MOx leading to a red-shift of around −4,200 cm−1. Additionally, this red-shift caused by the solvent effect on the electronic structure can by composed by approximately 60 % due to the electrostatic bulk effect, 10 % due to the explicit inclusion of the hydrogen-bonded water molecules and 30 % due to the explicit inclusion of the nearest water molecules.  相似文献   

6.
The cyano-bridged heteronuclear polymeric complex, [Cd(teta)Ni(μ-CN)2(CN)2] · 2H2O (1), (teta = triethylenetetraamine) was synthesized and characterized by FT-IR spectroscopy, thermal analysis and single crystal X-ray diffraction techniques. It crystallizes in the orthorhombic system, space group Pccn. The asymmetric unit also contains two uncoordinated water molecules. The coordination geometry around the Cd(II) centre is a highly distorted octahedral. In the crystal structure, intramolecular N–H···O and intermolecular N–H···O, O–H···O and O–H···N hydrogen bonds, beside the cyano-bridged chains made up of tetracyanonickelate ions coordinated to Cd(II) ions, where the Ni(II) ion is coordinated by four cyanoligands in a square-planar arrangement, link the molecules into polymeric networks parallel to (001) plane, where the hydrogen bonded water molecules occupy the cavities between the layers. The FT-IR spectrum was reported in the 4,000–400 cm−1 region. Vibration assignments were given for all the observed bands and the spectral feature also supported the structure of the polymeric complex. The decomposition reaction takes place in the temperature range 20–1,000 °C in the static air atmosphere.  相似文献   

7.
Fast capillary electrophoresis–mass spectrometry measurements under counter-electroosmotic analyte migration conditions are presented. Efficient separations of a homologous series of six hyaluronan oligosaccharides (comprising 1–6 hyalobiuronic acid moieties) could be completed in 65 s. Separations were achieved in short-length fused silica capillaries under high electric field strengths of up to 1.25 kV·cm−1. Capillary inner diameters ranging from 5 to 50 μm were investigated, resulting in an optimal value of 15 μm. The influence of capillary dimensions and buffer composition on separation efficiency and sensitivity are discussed. Optimal separations were achieved using a 28 cm × 15 μm capillary, a separation high voltage of 35 kV, a background electrolyte of 25 mM ammonium acetate adjusted to pH 8.5, and negative ionization mode. The optimized method was successfully applied to a bovine testicular hyaluronidase digest of hyaluronan. Only minimal sample pretreatment for protein-containing samples is required. The simple manual injection procedure and fast separations allow for a sample throughput of 35 samples per hour.  相似文献   

8.
A set of commercial milk and Sicilian cheeses was analysed by a combination of fast field cycling (FFC) nuclear magnetic resonance (NMR) relaxometry and chemometrics. The NMR dispersion (NMRD) curves were successfully analysed with a mathematical model applied on Parmigiano–Reggiano (PR) cheese. Regression parameters were led back to the molecular components of cheeses (water trapped in casein micelles, proteins and fats) and milk samples (water belonging to hydration shells around dispersed colloidal particles of different sizes and bulk water). The application of chemometric analysis on relaxometric data enabled differentiating milk from cheeses and revealing differences within the two sample groups of either cheeses or milk samples. Marked differences among cheeses were evidenced by statistical analysis of the sole quadrupolar peaks parameters, suggesting that these contain information on the nature of the milk used during cheese production. Hence, combination of FFC NMR and chemometrics represents a powerful tool to investigate alterations in dairy products.  相似文献   

9.
A Raman spectroscopic study was carried out on water in gelatin at 4% w/v in gel (25 °C) and sol (40–60 °C) states at various concentrations (0.5, 1, 5, 10 and 15 mM) of anionic surfactant, sodium dodecyl sulfate (SDS). The in-phase collective stretching mode vibration of hydrogen-bonded -OH oscillators, centered around 3250 cm−1 in a tetrahedral network of water molecules, was observed to be significantly affected by temperature and the presence of SDS. According to our observation this may be due to the thinning of the hydration water around the gelatin molecules due to strong thermal agitation. The peak center of the collective bands of water decreased linearly with SDS concentration in the gel state which implied that with the increase in concentration of SDS, the -OH oscillators gradually lost their attachment to gelatin chains and were replaced by SDS molecules. Ultimately this resulted in a thinning of the hydration layer around the gelatin and the oscillation frequency of -OH oscillators moved towards 3250 cm−1 at 1 mM SDS concentration resulting in increased coupling of -OH oscillators to form the tetrahedral network at the critical micelle concentration (cmc) of SDS. The variation in the peak amplitudes and the systematic reversal of their trend about the cmc axis was surprising. At 40 °C the amplitude of the peak at 3250 cm−1 increased drastically due to a possible coil expansion by about 7–8% which accommodated more interstitial water into the pseudonetwork leading to an increase in the number of nearest neighbors and for about 6% increase in the C value. However, at the cmc the peak amplitude was observed to be independent of temperature. Continuous shifting of the peak center and full width at half-maxima towards lower values was observed with increasing SDS concentrations in the gel state. Received: 28 September 1998 Accepted in revised form: 8 March 1999  相似文献   

10.
This research is part of a European project (namely, CODICE project), main objective of which is modelling, at a multi-scale, the evolution of the mechanical performance of non-degraded and degraded cementitious matrices. For that, a series of experiments were planned with pure synthetic tri-calcium silicate (C3S) and bi-calcium silicate (C2S) (main components of the Portland cement clinker) to obtain different calcium–silicate–hydrate (C–S–H) gel structures during their hydration. The characterization of those C–S–H gels and matrices will provide experimental parameters for the validation of the multi-scale modelling scheme proposed. In this article, a quantitative method, based on thermal analyses, has been used for the determination of the chemical composition of the C–S–H gel together with the degree of hydration and quantitative evolution of all the components of the pastes. Besides, the microstructure and type of silicate tetrahedron and mean chain length (MCL) were studied by scanning electron microscopy (SEM) and 29Si magic-angle-spinning (MAS) NMR, respectively. The main results showed that the chemical compositions for the C–S–H gels have a CaO/SiO2 M ratio almost constant of 1.7 for both C3S and C2S compounds. Small differences were found in the gel water content: the H2O/SiO2 M ratio ranged from 2.9 ± 0.2 to 2.6 ± 0.2 for the C3S (decrease) and from 2.4 ± 0.2 to 3.2 ± 0.2 for the C2S (increase). The MCL values of the C–S–H gels, determined from 29Si MAS NMR, were 3.5 and 4 silicate tetrahedron, for the hydrated C3S and C2S, respectively, remaining almost constant at all hydration periods.  相似文献   

11.
The (1)H and (17)O NMR relaxometric properties of two cationic complexes formed by Gd(III) with a macrocyclic heptadentate triamide ligand, L(1), and its Nmethylated analogue, L(2), have been investigated in aqueous media as a function of pH, temperature and magnetic field strength. The complexes possess two water molecules in their inner coordination sphere for which the rate of exchange has been found to be sensibly faster for the Nmethylated derivative and explained in terms of electronic effects (decrease of the charge density at the metal center) and perturbation of the network of hydrogen-bonded water molecules in the outer hydration sphere. The proton relaxivity shows a marked dependence from pH and decreases of about six units in the pH range 6.5 to 9.0. This has been accounted for by the displacement of the two water molecules by dissolved carbonate which acts as a chelating anion. The formation of ternary complexes with lactate, malonate, citrate, acetate, fluoride and hydrogenphosphate has been monitored by (1)H NMR relaxometric titrations at 20 MHz and pH 6.3 and the value of the affinity constant, K, and of the relaxivity of the adducts could be obtained. Lactate, malonate and citrate interact strongly with the complexes (log K > or =3.7) and coordinate in a bidendate mode by displacing both water molecules. Larger affinity constants have been measured for GdL(2). Acetate, fluoride and hydrogenphosphate form monoaqua ternary complexes which were investigated in detail with regard to their relaxometric properties. The NMR dispersion (NMRD) profiles indicate a large contribution to the relaxivity of the adducts from water molecules belonging to the second hydration shell of the complexes and hydrogen-bonded to the anion. A VT (17)O NMR study has shown a marked increase of the rate of water exchange upon binding which is explained by coordination of the anion in an equatorial site, thus leaving the water molecule in an apical position, more accessible for interactions with the solvent molecules of the second hydration shell which facilitate the exchange process.  相似文献   

12.
The absorption of millimeter electromagnetic radiation (v=1.4, 1.71, and 5 cm−1) by aqueous solutions of glycine (pH 6.1–6.2) in the concentration range of 0.5–2.5 mol L−1 was measured. It was found that the absorbing ability of the water present in the solutions, is higher than that of pure water. This phenomenon is explained by the presence of a center of negative hydration in the structure of the glycine zwitterion, which results in an increase in the rotational mobility of water molecules immobilized in the hydrate shell of the glycine zwitterion. For Part 5, see Ref. 1. Deceased. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1305–1307, July, 1997.  相似文献   

13.
In this study, the nanoporous zirconium titanate was prepared using sol–gel process and coated over 316L SS implants via dip-coating technique. XRD patterns of zirconium titanate are crystalline and orthorhombic in structure. FT-IR spectra showed a broad band between 3,500 and 3,300 cm−1, which was assigned to fundamental stretching vibrations of hydroxyl groups. The set of overlapping peaks in the range of 810–520 cm−1 are related to Zr–O and Zr–O–Ti groups. SEM-EDAX and TEM showed the surface morphology of coated zirconium titanate to be porous and uniform. Excellent adhesion of the coating to the substrate has been achieved. The contact angle value was found to be 12°. The coating acts as a barrier layer to the metallic implants and induces the formation of hydroxyapatite layer on the metal surfaces. These results revealed that the nano zirconium titanate coated 316L SS exhibit higher bioactivity compared to that of uncoated 316L SS.  相似文献   

14.
The growth behavior of amorphous anodic films on Ta–Nb solid solution alloys has been investigated over a wide composition range at a constant current density of 50 A m−2 in 0.1 mol dm−3 ammonium pentaborate electrolyte. The anodic films consist of two layers, comprising a thin outer Nb2O5 layer and an inner layer consisting of units of Ta2O5 and Nb2O5. The outer Nb2O5 layer is formed as a consequence of the faster outward migration of Nb5+ ions, compared with Ta5+ ions, during film growth under the high electric field. Their relative migration rates are independent of the alloy composition. The formation ratio, density, and capacitance of the films show a linear relation to the alloy composition. The susceptibility of the anodic films to field crystallization during anodizing at constant voltage increases with increasing niobium content of the alloy.  相似文献   

15.
The decomposition mechanism of 5-Aza-2′-deoxycytidine has been studied by the use of computational techniques. Optimized structures for all of the stationary points in the gas phase were investigated at B3LYP/6-31+G(d,p) level of theory. Single-point energies were determined employing the ab initio MP2 method in conjunction with the 6-311++G(d,p) basis set. Five possible pathways, paths 1–5, were evaluated. In each pathway, the direct (A-paths 1–5) and water-assisted (B-paths 1–5) processes were considered. Meanwhile, the local microhydration model with the direct participation of three water molecules around the reaction centers was adopted to mimic the system for the water-assisted decomposition mechanisms above, where one water molecule is the nucleophilic reactant and the other two are the auxiliary molecules located on each side of the nucleophilic water. The results in the gas phase exhibit that the energy barriers of the water-assisted pathways based on the local microhydration model decrease dramatically by about 15–20 kcal/mol as compared with those of the direct pathways because of the contribution of the auxiliary water molecules. In addition, bulk solvent effects of water were determined by means of the self-consistent reaction field based on the conductor-like polarized continuum model and Monte Carlo simulation with free energy perturbation (MC-FEP) technique, respectively. Our computational results indicate that B-path 3 in the decomposition reaction of 5-azadC is the most favorable, where the calculated rate constant (1.68 × 10−3 min−1) using the MC-FEP method is within the range of the experimentally determined values [(5.89 ± 0.54) × 10−3 min−1 by UV and (1.46 ± 0.08) × 10−3 min−1 by NMR].  相似文献   

16.
A novel method of studying molecular interactions is introduced. It is a method based on the framework of a two-dimensional (2D) infrared (IR) correlation spectroscopy technique with a new data pretreatment strategy. In this method, an additional external perturbation stimulates the system to cause some selective changes in the state, order, and surroundings of system constituents. The overall response of the stimulated system to the applied external perturbation leads to distinctive changes in the measured spectrum, and a series of perturbation-induced dynamic spectra are collected in a systematic manner. Such a set of dynamic spectra are then transformed into a set of 2D correlation spectra by cross-correlation analysis. Temperature was chosen as an external perturbation, and the molecular interaction between 4-aminopyridine (Apy) and methacrylic acid (MAA) was investigated by 2D IR correlation spectroscopy. Synchronous cross peaks exist between the stretching vibration of the C–O group of MAA at 1,298 and 1,202 cm−1 and the C=N group of Apy at 1,531 cm−1, and between the carbonyl group of MAA at 1,705 cm−1 and the amino group of Apy at 3,382 and 3,212 cm−1. The synchronous cross peaks are from orientation of MAA and Apy vibrations generated at the same time; the synchronization of microstructure movements in the molecules indicates that there exists strong interactions between MAA and Apy. According to 2D correlation rules, static electricity and hydrogen-bonding interactions exist between Apy and MAA. Such results were further verified by 1H-NMR spectroscopy. The successful application demonstrates that 2D IR correlation spectroscopy may be a convenient and effective method in the study of molecular interactions.  相似文献   

17.
Crystalline aluminum trihydroxides Al(OH)3 (gibbsite, baverite, and nordstrandite) can serve as layered intercalation matrices in which metal salts are arranged in a specific way. Small cations (lithium, magnesium, and transition metals) lie in the octahedral voids of aluminum hydroxide layers, and water molecules are located between the layers. This localization of small cations gives rise to the molecular sieve effect, where alkaline and alkaline earth cations (Na+, K+, Ca2+, etc.), which are large relative to the octahedral voids, are not intercalated into aluminum trihydroxides. In the first step of lithium salt intercalation, the cations, the anions, and the water molecules are incorporated into the interlayer space of aluminum hydroxide with subsequent transition of lithium into the voids of the layer. Translated fromZhurnal Strukturnoi Khimii, Vol. 40, No. 5, pp. 832–848, September-October, 1999.  相似文献   

18.
Three thiols with three aromatic rings and different structure – terphenyl-4-methanethiol (TPMT), terphenyl-4-thiol (TPT), and anthracene-2-thiol (AT) – have been used to form self-assembled monolayers (SAM) on vapour-deposited and flame-annealed Au films on glass substrates. All three SAMs effectively block the anodic formation of Au oxide, indicating densely packed layers which prevent the access of water and hydrated ions through the organic layer to the metal surface. The film improves its inhibiting properties with duration of exposure to the thiol solutions, reaching completion after 1 hour [1]. The charge-transfer reaction of the Fe(CN)6 3–/Fe(CN)6 4– system is blocked for TPMT films with an insulation of the π-electron system from the Au surface by the methylene group. TPT and especially AT films show the current density of the redox reactions. It is proposed that the charge transfer occurs via the aromatic molecules of the SAMs to the Au surface. Electronic Publication  相似文献   

19.
A simple method was used to fabricate flavin adenine dinucleotide (FAD)/NiOx nanocomposite on the surface of glassy carbon (GC) electrode. Cyclic voltammetry technique was applied for deposition nickel oxide nanostructures onto GC surface. Owing to its high biocompatibility and large surface area of nickel oxide nanomaterials with immersing the GC/NiOx-modified electrode into FAD solution for a short period of time, 10–140 s, a stable thin layer of the FAD molecules immobilized onto electrode surface. The FAD/NiOx films exhibited a pair of well-defined, stable, and nearly reversible CV peaks at wide pH range (2–10). The formal potential of adsorbed FAD onto nickel oxide nanoparticles film, E o′ vs. Ag/AgCl reference electrode is −0.44 V in pH 7 buffer solutions was similar to dissolved FAD and changed linearly with a slope of 58.6 mV/pH in the pH range 2–10. The surface coverage and heterogeneous electron transfer rate constant (k s ) of FAD immobilized on NiOx film glassy carbon electrode are 4.66 × 10−11 mol cm−2 and 63 ± 0.1 s−1, indicating the high loading ability of the nickel oxide nanoparticles and great facilitation of the electron transfer between FAD and nickel oxide nanoparticles. FAD/NiOx nanocomposite-modified GC electrode shows excellent electrocatalytic activity toward S2O82− reduction at reduced overpotential. Furthermore, rotated modified electrode illustrates good analytical performance for amperometric detection of S2O82−. Under optimized condition, the concentration calibration range, detection limit, and sensitivity were 3 μM–1.5 mM, 0.38 μM and 16.6 nA/μM, respectively.  相似文献   

20.
A quasielastic neutron scattering experiment has revealed the dynamics of surface water in a high surface area zirconium oxide in the temperature range of 300-360 K. The characteristic times of the rotational (picoseconds) and translational (tens of picoseconds) components of diffusion motion are well separated. The rotational correlation time shows an Arrhenius-type behavior with an activation energy of 4.48 kJ/mol, which is lower compared to bulk water. The rotational diffusion at room temperature is slower by about a factor of 2 compared to bulk water, whereas the translational diffusion slows down by a factor of 40. In contrast to bulk water, the translational correlation time exhibits an Arrhenius-type temperature dependence with an activation energy of 11.38 kJ/mol. Comparison of different models for jump diffusion processes suggests that water molecules perform two-dimensional jumps at a well-defined, almost temperature-independent distance of 4.21-4.32 A. Such a large jump distance indicates a low molecular density of the layer of diffusing molecules. We argue that undissociated water molecules on an average form two hydrations layers on top of the surface layer of hydroxyl groups, and all the layers have similar molecular density. Quasielastic neutron scattering experiment assesses the dynamics of the outermost hydration layer, whereas slower motion of the water molecules in the inner hydration layer contributes to the elastic signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号