首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The purpose of this paper is to explore a viscous two-phase liquid-gas model relevant for well and pipe flow. Our approach relies on applying suitable modifications of techniques previously used for studying the single-phase isothermal Navier-Stokes equations. A main issue is the introduction of a novel two-phase variant of the potential energy function needed for obtaining fundamental a priori estimates. We derive an existence result for weak solutions in a setting where transition to single-phase flow is guaranteed not to occur when the initial state is a true mixture of both phases. Some numerical examples are also included in order to demonstrate characteristic behavior of solutions. In particular, we illustrate how two-phase flow is genuinely different compared to single-phase flow concerning the behavior of an initial mass discontinuity.  相似文献   

2.
We are concerned with the global solvability of the differential system introduced by Shliomis to describe the flow of a colloidal suspension of magnetized nanoparticles in a nonconducting liquid, under the action of an external magnetic field. The system is a combination of the Navier–Stokes equations, the magnetization equation, and the magnetostatic equations. We prove, by using a method of regularization, the existence of global‐in‐time weak solutions with finite energy to an initial boundary‐value problem and establish the long‐time behaviour of such solutions. The main difficulty is due to the singularity of the gradient magnetic force and the torque. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
We consider a phase field model for the flow of two partly miscible incompressible, viscous fluids of non-Newtonian (power law) type. In the model it is assumed that the densities of the fluids are equal. We prove the existence of weak solutions for general initial data and arbitrarily large times with the aid of a parabolic Lipschitz truncation method, which preserves solenoidal velocity fields and was recently developed by Breit, Diening, and Schwarzacher.  相似文献   

4.
We introduce a new sharp interface model for the flow of two immiscible, viscous, incompressible fluids. In contrast to classical models for two-phase flows we prescribe an evolution law for the interfaces that takes diffusional effects into account. This leads to a coupled system of Navier–Stokes and Mullins–Sekerka type parts that coincides with the asymptotic limit of a diffuse interface model. We prove the long-time existence of weak solutions, which is an open problem for the classical two-phase model. We show that the phase interfaces have in almost all points a generalized mean curvature.  相似文献   

5.
This article is devoted to the derivation and analysis of a system of partial differential equations modeling a diffuse interface flow of two Newtonian incompressible magnetic fluids. The system consists of the incompressible Navier–Stokes equations coupled with an evolutionary equation for the magnetization vector and the Cahn–Hilliard equations. We show global in time existence of weak solutions to the system using the time discretization method.  相似文献   

6.
We consider an initial boundary value problem for a non-linear differential system consisting of one equation of parabolic type coupled with a n × n semi-linear hyperbolic system of first order. This system of equations describes the compressible miscible displacement of n + 1 chemical species in a porous medium, in the absence of diffusion and dispersion. We assume the viscosity of the fluid mixture to be constant. We prove, in three space dimensions, the existence of a global weak solution with non-smooth initial data for the concentration. The proof is based on the artificial viscosity method together with a compensated compactness argument. © 1998 B. G. Teubner Stuttgart—John Wiley & Sons, Ltd.  相似文献   

7.
The objective of this work is to explore a compressible gas-liquid model designed for modeling of well flow processes. We build into the model well-reservoir interaction by allowing flow of gas between well and formation (surrounding reservoir). Inflow of gas and subsequent expansion of gas as it ascends towards the top of the well (a so-called gas kick) represents a major concern for various well operations in the context of petroleum engineering. We obtain a global existence result under suitable assumptions on the regularity of initial data and the rate function that controls the flow of gas between well and formation. Uniqueness is also obtained by imposing more regularity on the initial data. The key estimates are to obtain appropriate lower and upper bounds on the gas and liquid masses. For that purpose we introduce a transformed version of the original model that is highly convenient for analysis of the original model. In particular, in the analysis of the transformed model additional terms, representing well-formation interaction, can be treated by natural extensions of arguments that previously have been employed for the single-phase Navier-Stokes model. The analysis ensures that transition to single-phase regions do not appear when the initial state is a true gas-liquid mixture.  相似文献   

8.
This work deals with a viscous two-phase liquid–gas model relevant to the flow in wells and pipelines. The liquid is treated as an incompressible fluid whereas the gas is assumed to be polytropic. The model is rewritten in terms of Lagrangian coordinates and is studied in a free boundary setting where the liquid and gas masses are of compact support initially, and continuous at the boundary. Consequently, the initial masses involve a transition to single-phase gas flow and vacuum at the boundary. An appropriate balance between pressure and viscous forces is identified which allows obtaining pointwise upper and lower estimates of masses. These estimates rely on the assumption of a certain relation between the rate of degeneracy of the viscosity coefficient and the rate that determines how fast the initial masses are vanishing at the boundary. By combining these estimates with basic energy type of estimates, higher order regularity estimates are obtained. The existence of global weak solutions is then proved by showing compactness for a class of semi-discrete approximations.  相似文献   

9.
We study the Cauchy problem of a cometary flow equation with a self-generated electric field. This kinetic model originates from the theory of astrophysical plasmas and can be viewed as a perturbation, by a wave-particle collision operator, of the classical Vlasov-Poisson system. By asymptotic methods in kinetic theory, global existence of nonnegative weak solutions to the Cauchy problem in three space variables is established for bounded initial data having finite second order velocity moments.  相似文献   

10.
11.
We prove the existence of global weak solutions for a new periodic integrable equation with peakon solutions.  相似文献   

12.
In this paper, we study a two-phase liquid–gas model with constant viscosity coefficient when both the initial liquid and gas masses connect to vacuum continuously. Just as in Evje and Karlsen (Commun Pure Appl Anal 8:1867–1894, 2009) and Evje et al. (Nonlinear Anal 70:3864–3886, 2009), the gas is assumed to be polytropic whereas the liquid is treated as an incompressible fluid. We use a new technique to get the upper and lower bounds of gas and liquid masses n and m. Then we get the global existence of weak solution by the line method. Also, we obtain the uniqueness of the weak solution.  相似文献   

13.
14.
In this paper, we consider the Cauchy problem for a two-phase model with magnetic field in three dimensions. The global existence and uniqueness of strong solution as well as the time decay estimates in H2(R3) are obtained by introducing a new linearized system with respect to (nγ?n?γ,n?n?,P?P?,u,H) for constants n?0 and P?>0, and doing some new a priori estimates in Sobolev Spaces to get the uniform upper bound of (n?n?,nγ?n?γ) in H2(R3) norm.  相似文献   

15.
We obtain the existence of global-in-time weak solutions for the Cauchy problem of a modified two-component Camassa-Holm equation. The global weak solution is obtained as a limit of viscous approximation. The key elements in our analysis are the Helly theorem and some a priori one-sided supernorm and space-time higher integrability estimates on the first-order derivatives of approximation solutions.  相似文献   

16.
We consider a model based on the Navier–Stokes–Fourier system coupled to a transport equation, recently proposed in order to describe the thermal effects in low Mach number radiative flows. We establish global-in-time existence in weighted spaces for the associated Cauchy problem in the framework of weak solutions.  相似文献   

17.
In this paper, by using a new technique from the compensated compactness method, we study the Cauchy problem of the chromatography system of two equations, and obtain the existence of the global weak solutions when the regular BV estimate is assumed for only one characteristic field.  相似文献   

18.
In this paper, we consider Cauchy problem for a two-phase model with magnetic field in three dimensions. Under some smallness assumptions on the initial data but possibly large oscillations, we obtain the global well-posedness of strong solution as well as its large-time behavior. Compared with Wen and the first author's work [28] where global well-posedness and large time behavior of strong solutions were obtained subject to smallness of initial data in H2 norm, we only need the smallness of initial energy which allows large oscillations of the initial data.  相似文献   

19.
We present results on optimal control of two-phase flows. The fluid is modeled by a thermodynamically consistent diffuse interface model and allows to treat fluids of different densities and viscosities. In earlier work we proposed an energy stable time discretization for this model that we now employ to derive existence of optimal controls for a time discrete optimal control problem. The control aim is to obtain a desired distribution of the two phases in the system. For this we investigate three control actions. We use tangential Dirichlet boundary control and distributed control. We further consider the inverse problem of finding an initial distribution such that the evolution over a given time horizon starting from this value is close to a desired distribution. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
We consider a diffuse interface model for the flow of two viscous incompressible Newtonian fluids with different densities in a bounded domain in two and three space dimensions and prove existence of weak solutions for it. In contrast to earlier contributions, we study a model with a singular nonlocal free energy, which controls the Hα/2-norm of the volume fraction. We show existence of weak solutions for large times with the aid of an implicit time discretization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号