首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this work, an in situ acylation combined with solid‐phase microextraction coupled to gas chromatography and mass spectrometry method has been developed for simultaneously determining haloanisoles (2,4,6‐trichloranisole, 2,4,6‐tribromoanisole), and their direct precursors (2,4,6‐trichlorophenol, 2,4,6‐tribromophenol) and indirect precursors (2‐chloropenol, 2,4‐dichlorophenol, 2‐bromophenol, 2,4‐dibromophenol) in water. The key parameters for the solid‐phase microextraction were determined by using Plackett–Burman screening and optimized by central composite optimization. Under optimal conditions, the eight compounds can be analyzed in a short time (33 min) with a strong linearity ranging from 2 to 200 ng/L (correlation coefficient greater than 0.996), showing good sensitivities with the limit of detection in a range of 0.23–0.91 ng/L and a limit of quantification of 0.77–3.03 ng/L, good repeatability (2.00–9.10%) and interday precision (1.67–11.3%). When environmental water samples were treated, the recoveries of target compounds were 75.5–127.3%, suggesting that the developed method could be applied in probing the origin of haloanisoles and monitoring halophenols and haloanisoles in natural waters at concentration levels of ng/L.  相似文献   

2.
A simple solid-phase microextraction (SPME) device, coupled with gas chromatography-flame ionization detection (GC-FID), was developed to detect trace levels of phthalates in environmental water samples. Polyaniline (PANI) was chosen as the sorbent for the SPME device and was electrochemically deposited on a stainless steel wire to achieve high thermal and mechanical stability. The porous structure of the PANI film, characterized by scanning electron microscopy (SEM), suggested large extraction capability. Key parameters were optimized and five phthalates were selected to evaluate the SPME-GC procedures. The method was also applied to the analysis of lake and river water samples. Control experiments were carried out using commercial polyacrylate (PA) fiber. The new PANI-SPME-GC method offers high accuracy, precision and sensitivity and low detection limits. Thus, the method developed could be used as a new way to monitor the trace levels of phthalates in water medium. A possible extraction mechanism was investigated using electrochemical impedance spectroscopy (EIS).  相似文献   

3.
This study develops a method for the analysis of seven fungicides in environmental waters, using solid-phase microextraction (SPME). The analyzed compounds--dicloran, chlorothalonil, vinclozolin, dichlofluanid, captan, folpet and captafol--belong to different classes of chemical compound (chloroanilines, sulphamides, phthalimides and oxazolidines) and are used mainly in agriculture and as antifouling paints. Their determination was carried out by gas chromatography with electron-capture and mass spectrometric detection. To perform SPME, four types of fibre have been assayed and compared: polyacrylate (85 microm), polydimethylsiloxane (100 and 30 microm), carbowax-divinylbenzene (CW-DVB 65 microm) and polydimethylsiloxane-divinylbenzene (65 microm). The main parameters affecting the SPME process such as pH, salt additives, methanol content, memory effect, stirring rate and adsorption-time profile were studied. The method was developed using spiked natural waters such as ground water, sea water, river water and lake water in a concentration range of 0.1-10 microg/l. Limits of detection of studied compounds were determined in the range of 1-60 ng/l, by using electron-capture and mass spectrometric detectors. The recoveries of all fungicides were in relatively high levels (70.0-124.4%) and the average R2 values of the calibration curves were above 0.990 for all the analytes. The SPME conditions were finally optimized in order to obtain the maximum sensitivity. The potential of the proposed method was realized by applying it to the trace-level screening determination of fungicides and antifouling compounds in sea water samples originating from various Greek marinas.  相似文献   

4.
A rapid, sensitive, convenient, and highly quality-assured method is presented for the determination of 19 organochlorine pesticides (OCPs) in small samples (10 ml) of ground water. Samples are initially fortified with 2,4,5,6-tetrachloro-m-xylene (surrogate) and decachlorobiphenyl (retention time marker), then extracted with a 30-micron thickness polydimethylsiloxane solid-phase microextraction fiber. The analytes collected are thermally desorbed in a heated gas chromatographic inlet, separated using independent fused-silica capillary columns ("primary" and "confirmatory"), and detected using electron-capture detection. Two independent statistical procedures were used to evaluate the detection limits, which typically range between 10 and 40 ng l-1, for these analytes. Method performance was also evaluated using two additional protocols employing "performance evaluation" samples, in which authentic ground water samples were fortified to ca. 100 ng l-1 in each of at least six OCPs. The method satisfies additional strict criteria based on uniformity of fiber performance and minimal degradation of the thermally-sensitive analytes endrin and DDT.  相似文献   

5.
A method was developed for the determination of trichloroanisole, tribromoanisole and pentachloroanisol by solid-phase microextraction and gas chromatography in paper samples (Kraft liner, Test liner and Miolo). Four commercial SPME fibers were evaluated: Polydimethylsiloxane (PDMS), Polyacrylate (PA), Carbowax/Divinylbenzene (CW/DVB) and Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS). DVB/CAR/PDMS gave the best results and was therefore selected. Other variables involved in the extraction procedure were studied and optimized, such as: sample volume, salting-out effect, temperature and extraction time, effect of organic solvent and previous sample preparation. Optimum conditions were obtained using 20 mL of sample with 5 mol L−1 NaCl in a 40 mL vial, extraction temperature of 70 °C and sonication and extraction time of 30 and 40 min, respectively. Detection limits ranged from 0.43 to 1.32 ng g−1 for all analytes. Recoveries between 70 and 100% were obtained and relative standard deviation was below 10% for all compounds.  相似文献   

6.
Gas chromatography (GC) with electron-capture detection (ECD), mass spectrometry (MS) and tandem mass spectrometry (MS-MS) were employed for the identification of 12 pesticides in water samples. For this purpose, a solid-phase extraction procedure with C18 cartridges was used, optimising the breakthrough volume and the saturation concentration. In GC-MS-MS, the lowest detectable concentrations for the pesticides were between 2 and 26 ng l(-1), recoveries ranged from 70 to 133% in water samples spiked at 100 ng l(-1) and the relative standard deviations were in the range 5.3 to 17.4%. The proposed analytical methodology was applied to analyse pesticides in wetland samples from Almería (Spain).  相似文献   

7.
Determination of polybrominated diphenyl ethers (PBDEs) in environmental samples has raised great concerns due to the widespread use of PBDEs and their potential risk to humans. Solid-phase microextraction (SPME) is a fast, simple, cost-effective, and green sample preparation technique and is widely used for environmental analysis, but reports on the application of SPME for determination of PBDEs are very limited, and only a few publications dealing with commercial SPME fibers are available for extraction of PBDEs. Herein, we report a novel SPME method using multiwalled carbon nanotubes (MWCNTs) as the SPME fiber coating for gas chromatography with electron-capture detection (GC-ECD) of PBDEs in environmental samples. The MWCNTs coating gave much higher enhancement factors (616-1756) than poly (5% dibenzene-95% dimethylsiloxane) coating (139-384) and activated carbon coating (193-423). Thirty-minute extraction of 10 mL of sample solution using the MWCNTs coated fiber for GC-ECD determination yielded the limits of detection of 3.6-8.6 ng L(-1) and exhibited good linearity of the calibration functions (r(2)>0.995). The precision (RSD%, n=4) for peak area and retention time at the 500 ng L(-1) level was 6.9-8.8% and 0.6-0.9%, respectively. The developed method was successfully applied for the analysis of real samples including local river water, wastewater, and milk samples. The recovery of the PBDEs at 500 ng L(-1) spiked in these samples ranged from 90 to 119%. No PBDEs were detected in the river water and skimmed milk samples, whereas in the wastewater sample, 134-215 ng L(-1) of PBDEs were found. The PBDEs were detected in all whole fat milk samples, ranging from 13 to 484 ng L(-1). In a semiskimmed milk sample, only BDE-47 was found at 21 ng L(-1).  相似文献   

8.
An online device is described in which analytes are extracted from a liquid sample by means of in-tube solid-phase microextraction (in-tube SPME), pulse released by rapid heating, and transferred to a gas chromatograph in a fully automated way. Switching of the sample and gas flows as well as the heating of the extraction tube and the valves is controlled by a remote computer system. Results obtained for river water and for aqueous standard solutions of phenanthrene are presented and are compared to the performance of standard SPME.  相似文献   

9.
An electron-capture gas chromatographic procedure was developed for the simultaneous analysis of the enantiomers of fluoxetine and norfluoxetine. The assay involves basic extraction of these enantiomers from the biological samples, followed by their conversion to diastereoisomers using the chiral derivatizing reagent (S)-(-)-N-trifluoroacetylprolyl chloride. The method was utilized to detect and measure the quantity of these enantiomers in plasma and urine of patients and in liver and brain tissue of rats treated with (R,S)-fluoxetine.  相似文献   

10.
分散液液微萃取-气相色谱法测定水样中甲基环硅氧烷   总被引:1,自引:0,他引:1  
将分散液液微萃取与气相色谱法技术相结合,建立了测定水样中3种甲基环硅氧烷残留的方法.重点探讨了萃取剂的种类和用量、分散剂的种类和用量、萃取时间及盐浓度等对样品萃取效率的影响.结果表明在优化条件下,待测物在5~100μg/L范围内线性良好(r>0.99),检出限在2~4μg/L之间,富集倍数可达165~170倍,相对标准...  相似文献   

11.
A solid-phase microextraction (SPME) method combined with gas chromatography with nitrogen-phosphorous and electron capture detection for the analysis of the pesticides terbumeton, metribuzine, isomethiozine, pyridafenthion and triadimenol in river water has been developed. For this purpose, polyacrylate and polydimethylsiloxane coated fibres have been utilised and the factors affecting throughput, precision and accuracy of the SPME method have been investigated and optimised. These factors include: matrix influence, adsorption time, pH, salt effect, desorption time, temperature and also the lapse of time between sampling and injection. The performed analytical procedure showed detectability ranging from 2.0 ng l(-1) to 3.0 microg l(-1) and precision from 1.9 to 27.7% (as relative standard deviation) depending on the pesticide, the fibre and the detector used. The results demonstrate the suitability of the SPME method to analyse these non-volatile pesticides in river water.  相似文献   

12.
A response surface methodology was applied to optimise the solid-phase microextraction (SPME) conditions using a polyacrylate-coated fiber to determine thirteen organochlorine pesticides from water. Analyses were performed using gas chromatography-electron-capture detection. Variables affecting absorption in both the headspace and immersion extraction were optimised by using a response surface generated with a Doehlert design, and the results were compared. The immersion SPME method was selected since higher recoveries were obtained for most of the compounds studied. The method developed was applied to the analysis of tap and Ebro river water samples. The linear range of most pesticides for real samples was found to be between 0.001 and 2.5 micrograms l-1 and the limits of detection were between 0.15 and 0.35 ng l-1. The repeatability and the reproducibility between days of the method (n = 6), expressed as relative standard deviation, for tap water spiked at a level of 1 ng l-1 were between 5.7 and 25.6% and between 7.6 and 26.5%, respectively.  相似文献   

13.
This paper describes the extraction of 49 organophosphorus pesti-cides (OPPs) from water samples using solid-phase microextraction (SPME). Three fibers, including a 15-μm XAD-coated fiber, a 85-μm polyacrylate-coated fiber, and a 30-μm polydimethylsilox-ane-coated fiber (PDMS), were evaluated here. The effects of stirring and the addition of NaCl to the sample were examined for the polyacrylate-coated fiber. The precision of the technique was examined for all three fibers and the extraction kinetics were investigated using the XAD- and polyacrylate-coated fibers. With some exceptions, the XAD- and polyacrylate-coated fibers performed better than the PDMS-coated fiber. The superiority of the XAD-nd polyacrylate-coated fiber. The superiority of the XAD- and polyacrylate-coated fibers over the PDMS-coated fibers can be attribuibuted to the aromatic functionalities of the XAD and the polar functionalities in the polyacrylate. The relatively high percent RSDs indicate that the SPME technique needs to be further refined before it can be used for anything other than screening. A more effective form of agitation than mechanical stirring may be neccessary to reduce variability and achieve a faster equilibrium between the sample and the SPME fiber.  相似文献   

14.
Solid-phase microextraction (SPME) with an 85 microm polyacrylate fiber, coupled to gas chromatography-mass spectrometry was used to determine six phthalate esters and bis(2-ethylhexyl) adipate in water samples. The variables affecting the SPME absorption process were optimized and the method developed was applied to analyze both tap and commercial mineral water samples as well as water from the Ebro river and fishing and industrial ports. For real samples, the linear range in full scan acquisition mode was between 0.02 and 10 microg l(-1) for most compounds, and the limits of detection of the method were between 0.006 and 0.17 microg l(-1). Commercial water samples contained in recipients which were made from different materials were analyzed, and the influence of the material of the recipients on the concentration of phthalates was evaluated.  相似文献   

15.
Solid-phase microextraction (SPME) coupled to LC for the analysis of five diphenylether herbicides (aclonifen, bifenox, fluoroglycofen-ethyl, oxyfluorfen, and lactofen) is described. Various parameters of extraction of analytes onto the fiber (such as type of fiber, extraction time and temperature, pH, impact of salt and organic solute) and desorption from the fiber in the desorption chamber prior to separation (such as type and composition of desorption solvent, desorption mode, soaking time, and flush-out time) were studied and optimized. Four commercially available SPME fibers were studied. PDMS/divinylbenzene (PDMS/DVB, 60 microm) and carbowax/ templated resin (CW/TPR, 50 microm) fibers were selected due to better extraction efficiencies. Repeatability (RSD, < 7%), correlation coefficient (> 0.994), and detection limit (0.33-1.74 and 0.22-1.94 ng/mL, respectively, for PDMS/DVB and CW/TPR) were investigated. Relative recovery (81-104% for PDMS/DVB and 83-100% for CW/TPR fiber) values have also been calculated. The developed method was successfully applied to the analysis of river water and water collected from a vegetable garden.  相似文献   

16.
Solid-phase microextraction by immersion (IS-SPME) and headspace mode (HS-SPME), together with stir bar sorptive extraction (SBSE), have been assayed in combination with gas chromatography-ion trap tandem mass spectrometry (MS/MS) for analysing 2,4,6-trichlorophenol, 2,3,4,6-tetrachlorophenol, 2,4,6-tribromophenol, 2,4,6-trichloroanisole, 2,3,4,6-tetrachloroanisole and 2,4,6-tribromoanisole in different liquid matrices. Once, the optimization of MS/MS fragmentation analysis was carried out, sample enrichment was performed using the three mentioned extraction methods, and comparison through the determination of linearity, and LOD and LOQs were carried out. SBSE and IS-SPME methods described enabled us to determine the target compounds at ng/l levels, concentrations lower than their olfactory threshold, which is not the case of HS-SPME. SBSE showed a higher concentration capability than both SPME techniques, especially when compared to the HS-SPME mode. Thus, SBSE should be the definitive technique to analyse halophenols and haloanisoles in aqueous matrices. SBSE has been also applied to nine aqueous matrices as different as tap water, wines or commercial lemon juice extract.  相似文献   

17.
A solid-phase microextraction (SPME) procedure for the determination of four haloanisoles (2,4,6-trichloroanisole, 2,3,4,6-tetrachloroanisole, pentachloroanisole and 2,4,6-tribromoanisole), as well as their precursor halophenols (2,4,6-trichlorophenol, 2,3,4,6-tetrachlorophenol, pentachlorophenol and 2,4,6-tribromophenol), involved in the presence of cork taint in wine, was developed. Firstly, analytes were concentrated on a SPME fiber, and then halophenols were derivatised using N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA). The compounds were desorbed for 5 min in the gas chromatography injector port and then determined with an electron capture detector. The influence of different parameters on the efficiency of extraction (volume of sample, type of fibre coating and time) and derivatisation (time, temperature and volume of MSTFA) steps was evaluated. Polyacrylate (PA) was selected as the extraction fiber, optimised parameters for SPME were 10 ml of wine, temperature 70 degrees C and extraction time 60 min. The optimal conditions identified for the derivatisation step were temperature 25 degrees C, reagent volume 50 microl and extraction time 25 min. Under optimal conditions, the proposed method showed satisfactory linearity, precision and detection limits. The method was applied successfully to the analysis of red wine samples. To our knowledge, this is the first time that headspace (HS) SPME combined with on-fiber derivatisation has been applied to determine cork taint responsible compounds in wine.  相似文献   

18.
This paper compares the advantages and disadvantages of two different configurations for the extraction of triazines from water samples: (1) on-fibre solid-phase microextraction (SPME) coupled to conventional liquid chromatography (LC); and (2) in-tube SPME coupled to capillary LC. In-tube SPME has been effected either with a packed column or with an open capillary column. A critical evaluation of the main parameters affecting the performance of each method has been carried out in order to select the most suitable approach according to the requirements of the analysis. In the on-fibre SPME configuration the fibre coating was polydimethylsiloxane (PDMS)-divinylbenzene (DVB). The limits of detection (LODs) obtained with this approach under the optimized extraction and desorption conditions were between 25 and 125 microg/L. The in-tube SPME approach with a C18 packed column (35 mm x 0.5 mm I.D., 5 microm particle size) connected to a switching micro-valve provided the best sensitivity; under such configuration the LODs were between 0.025 and 0.5 microg/L. The in-tube SPME approach with an open capillary column coated with PDMS (30 cm x 0.25 mm I.D., 0.25 microm of thickness coating) connected to the injection valve provided LODs between 0.1 and 0.5 microg/L. In all configurations UV detection at 230 nm was used. Atrazine, simazine, propazine, ametryn, prometryn and terbutryn were selected as model compounds.  相似文献   

19.
Huang SD  Huang HI  Sung YH 《Talanta》2004,64(4):887-893
Solid-phase microextraction (SPME) coupled with high-performance liquid chromatography (HPLC) for the determination of triazine is described. Carbowax/templated resin (CW/TPR, 50 μm), polydimethylsiloxane/divinylbenzene (PDMS/DVB, 60 μm), polydimethylsiloxane (PDMS, 100 μm), and polyacrylate (PA, 85 μm) fibers were evaluated for extraction of the triazines. CW/TPR and PDMS/DVB fibers were selected for further study. Several parameters of the extraction and desorption procedure were studied and optimized (such as types of fibers, desorption mode, desorption time, compositions of solvent for desorption, soaking periods and the flow rate during desorption period, extraction time, temperature, pH, and ionic strength of samples). Both CW/TPR and PDMS/DVB fibers are acceptable; a simple calibration-curve method based on simple aqueous standards can be used. The linearity of this method for analyzing standard solution has been investigated over the range 5-1000 ng mL−1 for both PDMS/DVB and CW/TPR fibers. All the correlation coefficients in the range 5-1000 ng mL−1 were better than 0.995 except Simazine and Atratone by CW/TPR fiber. The R.S.D.s range from 4.4% to 8.8 % (PDMS/DVB fiber) and from 2.4% to 7.2% (CW/TPR fiber). Method-detection limits (MDL) are in the range 1.2-2.6 and 2.8-3.4 ng mL−1 for the two fibers. These methods were applied to the determination of trazines in environmental water samples (lake water).  相似文献   

20.
A rapid and simple method of using solid-phase microextraction was developed for determination of 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) in water samples. In this method, the target analyte is extracted from the sample into the polymeric coating of the fused-silica fiber. After exposure, the fiber is thermally desorbed in the heated injection port of the gas chromatograph, and a chromatographic analysis is performed by using low-resolution tandem mass spectrometry. Parameters that may affect the extension of the microextraction process, such as sampling mode, sample volume, temperature, agitation, and sampling time, were studied. Extraction efficiencies for 3 coating fibers were investigated: 100 microm poly(dimethylsiloxane) (PDMS), 65 microm PDMS-divinylbenzene, and 75 microm carboxen-PDMS. Linearity was evaluated (R = 0.999) for a 250-fold concentration range from the fg/mL to the pg/mL level. The 2,3,7,8-TCDD was detected at the fg/mL level when the headspace over the water sample was sampled for 60 min; the limit of detection obtained was better than that of Method 8280B of the U.S. Environmental Protection Agency. The proposed method performed well when applied to the analysis of tap water, lake water, and seawater samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号