首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polystyrene (PS), being an amorphous polymer is immiscible with other polymers. To engender miscible blends, PS has been functionalized with an active amino‐functional group on the molecular chains of PS to yield amino‐substituted polystyrene (APS), which serves as a reactive compatibilizer. The compatibilization effect of amino functionalized polystyrene on the rubber toughening was explored and results were compared in terms of morphology, thermal, and mechanical properties of PS/SEBS‐g‐MA versus APS/SEBS‐g‐MA blends. In addition, the effect of rubber content on the blend morphology and mechanical properties were investigated. An appreciable change in the thermal stability of APS blends in comparison with PS blend has been probed. A marked correlation has been observed between phase morphology and thermal stability. Use of APS produced the compatibilized blends which render improved blend morphology, enhanced thermal and mechanical properties. Optimal thermal, morphological and mechanical profiles were depicted by 20‐wt% APS blend. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Recycled poly(ethylene terephthalate) (R‐PET) was blended with four types of polyethylene (PE), linear low density polyethylene (LLDPE; LL0209AA, Fs150), low density polyethylene (LDPE; F101‐1), and metallocene‐LLDPE (m‐LLDPE; Fv203) by co‐rotating twin‐screw extruder. Maleic anhydride‐grafted poly(styrene‐ethylene/butyldiene‐styrene) (SEBS‐g‐MA) was added as compatibilizer. R‐PET/PE/SEBS‐g‐MA blends were examined by scanning electron microscopy (SEM), differential scanning calorimeter (DSC), dynamic mechanical analysis (DMA), and mechanical property testing. The results indicated that the morphology and properties of the blends depended to a great extent on the miscibility between the olefin segments of SEBS‐g‐MA and PE. Due to the proper interaction between SEBS‐g‐MA and LDPE (F101‐1), most SEBS‐g‐MA, located at the interface between two phases of PET and LDPE to increase the interfacial adhesion, lead to better mechanical properties of R‐PET/LDPE (F101‐1) blend. However, both the poor miscibility of SEBS‐g‐MA with LLDPE (LL0209AA) and the excessive miscibility of SEBS‐g‐MA with LLDPE (Fs150) and m‐LLDPE (Fv203) reduced the compatibilization effect of SEBS‐g‐MA. DSC results showed that the interaction between SEBS‐g‐MA and PE obviously affected the crystallization of PET and PE. DMA results indicated that PE had more influence on the movement of SEBS‐g‐MA than PE did. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Thermoplastic elastomers (TPEs) based on new generation ultrahigh molecular weight styrene‐ethylene‐butylene‐styrene (SEBS) and thermoplastic polyurethane (TPU) are developed and characterized especially for automotive applications. Influence of maleic anhydride grafted styrene‐ethylene‐butylene‐styrene (SEBS‐g‐MA) and maleic anhydride grafted ethylene propylene rubber (EPM‐g‐MA) as compatibilizers has been explored and compared on the blends of SEBS/TPU (60:40). The amount of compatibilizers was varied from 0 to 10 phr. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies revealed the dramatic changes from a nonuniform to finer and uniform dispersed phase morphology. This was reflected in various mechanical properties. SEBS‐g‐MA modified blends showed higher tensile strength. EPM‐g‐MA modified blends also displayed considerable improvement. Elongation at break (EB) was doubled for the entire compatibilized blends. Fourier‐transform infrared spectrometry (FTIR) confirmed the chemical changes in the blends brought about by the interactions between blend components and compatibilizers. Both SEBS‐g‐MA and EPM‐g‐MA had more or less similar effects in dynamic mechanical properties of the blends. Additionally, melt rheological studies have also been pursued through a rubber process analyzer (RPA) to get a better insight.  相似文献   

4.
The effect of the triblock copolymer poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS) on the formation of the space charge of immiscible low‐density polyethylene (LDPE)/polystyrene (PS) blends was investigated. Blends of 70/30 (wt %) LDPE/PS were prepared through melt blending in an internal mixer at a blend temperature of 220 °C. The amount of charge that accumulated in the 70% LDPE/30% PS blends decreased when the SEBS content increased up to 10 wt %. For compatibilized and uncompatibilized blends, no significant change in the degree of crystallinity of LDPE in the blends was observed, and so the effect of crystallization on the space charge distribution could be excluded. Morphological observations showed that the addition of SEBS resulted in a domain size reduction of the dispersed PS phase and better interfacial adhesion between the LDPE and PS phases. The location of SEBS at a domain interface enabled charges to migrate from one phase to the other via the domain interface and, therefore, resulted in a significant decrease in the amount of space charge for the LDPE/PS blends with SEBS. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2813–2820, 2004  相似文献   

5.
Charpy drop‐weight‐impact and essential work of fracture (EWF) characteristics of maleic anhydride (MA)‐compatibilized styrene–ethylene butylene–styrene (SEBS)/polypropylene (PP) blends and their composites reinforced with short glass fibers (SGFs) were investigated. MA was grafted to either SEBS copolymer (SEBS‐g‐MA) or PP (PP‐g‐MA). The mPP blend was prepared by the compounding of 95% PP and 5% PP‐g‐MA. Drop‐weight‐impact results revealed that the mPP specimen had an extremely low impact strength. The incorporation of SEBS or SEBS‐g‐MA elastomers into mPP improved its impact strength dramatically. Similarly, the addition of SEBS was beneficial for enhancing the impact strength of the SGF/SEBS/mPP and SGF/SEBS‐g‐MA/mPP hybrids. A scanning electron microscopy examination of the fractured surfaces of impact specimens revealed that the glass‐fiber surfaces of the SGF/SEBS/mPP and SGF/SEBS‐g‐MA/mPP hybrids were sheathed completely with deformed matrix material. This was due to strong interfacial bonding between the phase components of the hybrids associated with the MA addition. Impact EWF tests were carried out on single‐edge‐notched‐bending specimens at 3 m s?1. The results showed that pure PP, mPP, and the composites only exhibited specific essential work. The nonessential work was absent in these specimens under a high‐impact‐rate loading condition. The addition of SEBS or SEBS‐g‐MA elastomer to mPP increased both the specific essential and nonessential work of fracture. This implied that elastomer particles contributed to the dissipation of energy at the fracture surface and in the outer plastic zone at a high impact speed of 3 m s?1. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1881–1892, 2002  相似文献   

6.
In this study, a series of styrene‐b‐ethylene‐co‐butylene‐b‐styrene copolymer (SEBS)/polypropylene (PP)/oil blends with different kinds of oil composition was developed through melt blending. The effect of oil with different composition and properties on its phase equilibrium and “redistribution” in multiphasic SEBS elastomer was systematically studied for the first time. Moreover, an integral influencing mechanism of oil composition on the structure and properties of SEBS/PP/oil blends was also put forward. The mineral oil was mainly distributed in ethylene/butylene (EB)/PP phase, which greatly enhanced the processing flowability of SEBS/PP/oil blends. With increasing oil CN content, a redistribution of oil appeared and excess naphthenic oil (NO) entered the interphase of soft and hard phases. The dynamic mechanical thermal analysis (DMTA) analysis indicated that the polystyrene (PS) phase was plasticized, which also helped to improve the processing fluidity of blends. However, the plasticizing of physical cross‐linking point PS resulted in a decrease in mechanical strength and thermal stability. Small‐angle X‐ray scattering (SAXS) and transmission electron microscope (TEM) results showed that PS phase (45 nm to 55 nm) cylindrically distributed in EB/PP/oil matrix, the excess NO in the interphase enlarged the distance between PS phase and widen the escape channel for oil migration. At over 45% oil CN content, the electron density difference between soft and hard phases reduced to the minimum, same as TgPS, indicating a deeper plasticizing effect. The PS phase swelled and exhibited elastic behavior; thus, the force could be uniformly transferred between two phases. Importantly, a recover in strength and thermal stability was observed in O‐5 blend. This work significantly filled the gap of studies in oil‐extended thermoplastic elastomers (TPEs), exhibiting great theoretical guiding significance and application value.  相似文献   

7.
Polyethylene‐g‐polystyrene (PE‐g‐PS) was synthesized as a compatibilizer for polypropylene/polystyrene­(PP/PS) blends by the living radical polymerization of styrene with polyethylene‐co‐glycidylmethacrylate (PE‐co‐GMA). The compatibilizer effect of PE‐g‐PS on the morphology and thermal properties of PP/PS blends was investigated. The crystalline temperature of PP in PP/PS blends decreased with increasing PE‐g‐PS contents. Morphologies of PP/PE‐g‐PS/PS blends showed much better dispersion of each domain for higher PE‐g‐PS contents. The molecular weight of PS segment in PP/PE‐g‐PS/PS blend was increased by addition of styrene monomer during the post melt blending process where post living radical polymerization reaction proceeded. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
Compatibilization of polystyrene/polypropylene (PS/PP) blends, by use of a series of butadiene–styrene block copolymers was studied by means of small‐angle X‐ray scattering (SAXS) and transmission electron microscopy (TEM). The compatibilizers used differ in molar mass and the number of blocks. It was shown that the ability of a block copolymer (BC) to participate in the formation of an interfacial layer (and hence in compatibilization) is closely associated with the molar mass of styrene blocks. If the styrene blocks are long enough to form entanglements with the styrene homopolymer in the melt, then the BC is trapped inside this phase of the PS/PP blends, and its migration to the PS/PP interface is difficult. In this case, the BC does not participate in the formation of the interfacial layer nor, consequently, in the compatibilization process. On the other hand, the BC's with the molar mass of the PS blocks below the critical value are proved to be localized at the PS/PP interface. This preferable entrapping of some styrene–butadiene BC's in the PS phase of the PS/PP blend is, of course, connected to the differing miscibility of the BC blocks with corresponding components of this blend. Although the styrene block is chemically identical to the styrene homopolymer in the blend, the butadiene block is similar to the PP phase. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1647–1656, 1999  相似文献   

9.
《先进技术聚合物》2018,29(1):234-243
In this study, sepiolite nanoclay is used as reinforcing agent for poly(lactic acid) (PLA)/(styrene‐ethylene‐butylene‐styrene)‐g‐maleic anhydride copolymer (SEBS‐g‐MA) 90/10 (w/w) blend. Effects of sepiolite on thermal behavior, morphology, and thermomechanical properties of PLA/SEBS‐g‐MA blend were investigated. Differential scanning calorimetry results showed 7% improvement in crystallinity at 0.5 wt% of sepiolite. The nanocomposite exhibited approximately 36% increase in the tensile modulus and 17% increase in toughness as compared with the blend matrix at 0.5 and 2.5 wt% of sepiolite respectively. Field emission scanning electron microscopy and transmission electron microscopy images exhibited sepiolite‐induced morphological changes and dispersion of sepiolite in both PLA and SEBS‐g‐MA phases. Dynamic mechanical analysis and wide angle X‐ray diffraction present evidences in support of the reinforcing nature of sepiolite and phase interaction between the filler and the matrix. This study confirms that sepiolite can improve tensile modulus and toughness of PLA/SEBS‐g‐MA blend.  相似文献   

10.
Impact‐modified polypropylene (PP)/vermiculite (VMT) nanocomposites toughened with maleated styrene–ethylene butylene–styrene (SEBS‐g‐MA) were compounded in a twin‐screw extruder and injection‐molded. VMT was treated with maleic anhydride, which acted both as a compatibilizer for the polymeric matrices and as a swelling agent for VMT in the nanocomposites. The effects of the impact modifier on the morphology and the impact, static, and dynamic mechanical properties of the PP/VMT nanocomposites were investigated. Transmission electron microscopy revealed that an exfoliated VMT silicate layer structure was formed in ternary (PP–SEBS‐g‐MA)/VMT nanocomposites. Tensile tests showed that the styrene–ethylene butylene–styrene additions improved the tensile ductility of the (PP–SEBS‐g‐MA)/VMT ternary nanocomposites at the expense of their tensile stiffness and strength. Moreover, Izod impact measurements indicated that the SEBS‐g‐MA addition led to a significant improvement in the impact strength of the nanocomposites. The SEBS‐g‐MA elastomer was found to be very effective at converting brittle PP/VMT organoclay composites into tough nanocomposites. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2332–2341, 2003  相似文献   

11.
Compatibilization of blends of linear low-density polyethylene (LLDPE) and polystyrene (PS) with block copolymers of styrene (S) and butadiene (B) or hydrogenated butadiene (EB) has been studied. The morphology of the LLDPE/PS (50/50) composition typically with 5% copolymer was characterized primarily by scanning electron microscopy (SEM). The SEB and SEBS copolymers were effective in reducing the PS domain size, while the SB and SBS copolymers were less effective. The noncrystalline copolymers lowered the tensile modulus of the blend by as much as 50%. Modulus calculations based on a coreshell model, with the rubbery copolymer coating the PS particle, predicted that 50% of the rubbery SEBS copolymer was located at the interface compared to only 5–15% of the SB and SBS copolymers. The modulus of blends compatibilized with crystalline, nonrubbery SEB and SEBS copolymers approached Hashin's upper modulus bound. An interconnected interface model was proposed in which the blocks selectively penetrated the LLDPE and PS phases to provide good adhesion and improved stress and strain transfer between the phases. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
Summary: The present communication reports the first use of electron tomography in reconstructing the three‐dimensional morphology in thermoplastic elastomer blends. The blends investigated were dynamically vulcanized blends of ethylene‐propylene‐diene (EPDM) rubber/poly(propylene)/oil and polystyrene‐block‐(ethylene‐co‐butylene)‐block‐polystyrene (SEBS)/poly(propylene)/oil. An easy identification of blend morphology could be carried out at blend compositions, where conventional transmission electron microscopic imaging gives misleading information. This technique gives a higher resolution than any other microscopic technique, and is applicable to blends with dispersed as well as co‐continuous morphologies.

Example of a tomographic model of partially co‐continuous SEBS phases in a SEBS/PP/oil thermoplastic blend. Only the contours of the SEBS phase are shown.  相似文献   


13.
Polypropylene (PP)/organo‐montmorillonite (Org‐MMT) nanocomposites toughened with maleated styrene‐ethylene‐butylene‐styrene (SEBS‐g‐MA) were prepared via melt compounding. The structure, mechanical properties, and dynamic mechanical properties of PP/SEBS‐g‐MA blends and their nanocomposites were investigated by X‐ray diffraction (XRD), polarizing optical microscopy (POM), tensile, and impact tests. XRD traces showed that Org‐MMT promoted the formation of β‐phase PP. The degree of crystallinity of PP/SEBS‐g‐MA blends and their nanocomposites were determined from the wide angle X‐ray diffraction via profile fitting method. POM experiments revealed that Org‐MMT particles served as nucleating sites, resulting in a decrease of the spherulite size. The essential work of fracture approach was used to evaluate the tensile fracture toughness of the nanocomposites toughened with elastomer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3112–3126, 2005  相似文献   

14.
By using supercritical carbon dioxide (sc‐CO2) as the physical foaming agent, microcellular foaming was carried out in a batch process from a wide range of immiscible polypropylene/polystyrene (PP/PS) blends with 10–70 wt% PS. The blends were prepared via melt processing in a twin‐screw extruder. The cell structure, cell size, and cell density of foamed PP/PS blends were investigated and explained by combining the blend phase morphology and morphological parameters with the foaming principle. It was demonstrated that all PP/PS blends exhibit much dramatically improved foamability than the PP, and significantly decreased cell size and obviously increased cell density than the PS. Moreover, the cell structure can be tunable via changing the blend composition. Foamed PP/PS blends with up to 30 wt% PS exhibit a closed‐cell structure. Among them, foamed PP/PS 90:10 and 80:20 blends have very small mean cell diameter (0.4 and 0.7 µm) and high cell density (8.3 × 1011 and 6.4 × 1011 cells/cm3). Both of blends exhibit nonuniform cell structure, in which most of small cells spread as “a string of beads.” Foamed PP/PS 70:30 blend shows the most uniform cell structure. Increase in the PS content to 50 wt% and especially 70 wt% transforms it to an irregular open‐cell structure. The cell structure of foamed PP/PS blends is strongly related to the blend phase morphology and the solubility of CO2 in PP more than that in PS, which makes the PP serve as a CO2 reservoir. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
This paper is part of a comprehensive study on using selective localization of carbon black (CB) at the interface of immiscible polymer blends in order to reduce the percolation threshold concentration and enhance the conductivity of the blends. CB was successfully localized at the interface of polypropylene/polystyrene (PP/PS) blend by introducing styrene-butadiene-styrene (SBS) tri-block copolymer to the blend. In CB-PP/PS/SBS blends, CB has higher affinity for the polybutadiene (PBD) section of the SBS copolymer, whereas in CB-PP/PS blends, CB prefers the PS phase. PP/PS interface is one of the preferred locations for the SBS copolymer in the (PP/PS) blend; at which the PBD section of the SBS copolymer forms a few nanometers thick layer able to accommodate the CB nano-particles. The influence of SBS addition on the morphology and electrical properties of various PP/PS blends filled with 1 vol% CB were studied. SBS influence on the conductivity of PP/PS blends was found to be a function of the PP/PS volume ratio and SBS loading. The most dramatic increase in conductivity was found in the (60/40) and (70/30) PP/PS blends upon the addition of 5 vol% SBS. 5 vol% SBS was found to be the optimum loading for most blends. Using 10 vol% of SBS was reported to deteriorate electrical conductivity of the conductive co-continuous PP/PS blends. For all blends studied, SBS addition was found to compatibilize the blends. Finer morphologies were obtained by increasing SBS loading.  相似文献   

16.
Mechanical and physical properties of polypropylene (PP)/polystyrene (PS) blend, PP/PS/polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS) ternary blend and their composites with carbon nanofibers (CNF) were investigated. Composites of ternary blend exhibited superior properties compared to those of binary blends. Mechanical performance of nanocomposites was intimately related to their phase morphology. PP/PS/SEBS/0.1 wt% CNF hybrid composites exhibited excellent impact strength (Four-fold increase compared to PP/PS blend) and ductility (12-fold increase in elongation at break, with respect to PP/PS blend). Moreover, these composites displayed good tensile strength and modulus (15% increase in Young's modulus, compared to PP/PS/SEBS blend) and are suitable for various end-use applications including automobile applications. Although crystallinity of PP phase is decreased by the incorporation of CNF, thermal stability of the composites remained almost unaffected. Contact angle measurements revealed that ternary composites exhibited maximum hydrophobicity.  相似文献   

17.
Hybrid composites consisting of isotactic poly(propylene) (PP), sisal fiber (SF), and maleic anhydride grafted styrene‐(ethylene‐co‐butylene)‐styrene copolymer (MA‐SEBS) were prepared by melt compounding, followed by injection molding. The melt‐compounding torque behavior, thermal properties, morphology, crystal structure, and mechanical behavior of the PP/MA‐SEBS/SF composites were systematically investigated. The torque test, thermogravimetric analysis, differential scanning calorimetric, and scanning electron microscopic results all indicated that MA‐SEBS was an effective compatibilizer for the PP/SF composites, and there was a synergism between MA‐SEBS and PP/SF in the thermal stability of the PP/MA‐SEBS/SF composites. Wide‐angle X‐ray diffraction analysis indicated that the α form and β form of the PP crystals coexisted in the PP/MA‐SEBS/SF composites. With the incorporation of MA‐SEBS, the relative amount of β‐form PP crystals decreased significantly. Mechanical tests showed that the tensile strength and impact toughness of the PP/SF composites were generally improved by the incorporation of MA‐SEBS. The instrumented drop‐weight dart‐impact test was also used to examine the impact‐fracture behavior of these composites. The results revealed that the maximum impact force (Fmax), impact‐fracture energy (ET), total impact duration (tr), crack‐initiation time (tinit), and crack‐propagation time (tprop) of the composites all tended to increase with an increasing MA‐SEBS content. From these results, the incorporation of MA‐SEBS into PP/SF composites can retard both the crack initiation and propagation phases of the impact‐fracture process. These prolonged the crack initiation and propagation time and increased the energy consumption during impact fracture, thereby leading to toughening of PP/MA‐SEBS/SF composites. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1214–1222, 2002  相似文献   

18.
This study examines how the relative role of coalescence suppression and interfacial tension reduction influence the particle size at various levels of in situ compatibilization. The polymers studied are polyethylene terephthalate (PET) as matrix and a polypropylene (PP) as dispersed phase compatibilized by a triblock copolymer of poly(styrene–hydrogenated butadiene–styrene) (SEBS) grafted with maleic anhydride. The interfacial tension was studied by the breaking‐thread method, and it was used along with the morphology to characterize the emulsification efficacy of the copolymers. By modifying the concentration of MA grafted on the SEBS, different levels of emulsification of the blends were obtained. A comparison of 1/99 and 10/90 PP/PET blends compatibilized by SEBS‐g‐MA allows one to distinguish the relative role of interfacial tension and coalescence suppression in diminishing particle size. It is shown that varying degrees of residual coalescence remain, depending on the level of %MA in the copolymer. A detailed study of the 2%MA system below interfacial saturation was carried out to shed further light on the dependence of coalescence suppression on emulsification level and interfacial coverage. After separating out the contribution of interfacial tension on particle size reduction, it is shown that coalescence suppression for this system increases gradually with areal density of modifier at the interface right up to the region of interfacial saturation. Finally, the interfacial and morphological data were used to test the ability of the Lee and Park model to describe coalescence in polymer blends. Reasonable agreement was found between the parameter c1, describing the coalescence in that model, and the trends related to residual coalescence from this study. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 939–951, 1999  相似文献   

19.
The compatibilizing effect of di‐, tri‐, penta‐, and heptablock (two types) copolymers with styrene and butadiene blocks was studied in polystyrene/polypropylene (PS/PP) 4/1 blends. The structure of PS/PP blends with the addition of 5 or 10 wt % of a block copolymer (BC) was determined on several scale levels by means of transmission electron microscopy (TEM) and small‐angle X‐ray scattering (SAXS). The results of the structure analysis were correlated with measured stress‐transfer properties: elongation at break, impact, and tensile strength. Despite the fact that the molar mass of the PS blocks in all the BCs used was about 10,000, that is, below the critical value M* (~18,000) necessary for the formation of entanglements of PS chains, all the BCs used were found to be good compatibilizers. According to TEM, a certain amount of a BC is localized at the interface in all the analyzed samples, and this results in a finer dispersion of the PP particles in the PS matrix, the effect being more pronounced with S‐B‐S triblock and S‐B‐S‐B‐S pentablock copolymers. The addition of these two BCs to the PS/PP blend also has the most pronounced effect on the improvement of mechanical properties of these blends. Hence, these two BCs can be assumed to be better compatibilizers for the PS/PP (4/1) blend than the S‐B diblock as well as both S‐B‐S‐B‐S‐B‐S and B‐S‐B‐S‐B‐S‐B heptablock copolymers. In both types of PS/PP/BC blends (5 or 10 wt % BC), the BC added was distributed between both the PS/PP interface and the PS phase, and, according to SAXS, it maintained a more or less ordered supermolecular structure of neat BCs. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 931–942, 2001  相似文献   

20.

The effects of various compatibilizers on thermal, mechanical and morphological properties of 50/50 polypropylene/polystyrene blends were investigated. Various compatibilizers, polystyrene-(ethylene/butylenes/ styrene) (SEBS), ethylene vinyl acetate (EVA), polystyrene-butylene rubber (SBR) and blend of compatibilizers SEBS/PP-g-MAH, EVA/PP-g-MAH, and SBR/PP-g-MAH were used. Differential scanning calorimetry, thermogravimetric analysis, wide-angle X-ray scattering, scanning electron microscopy, microhardness, and Izod impact strength were adopted. It was found that the influence of various compatibilizers was appeared on all the properties studied. The properties of the blends compatibilized with SEBS, EVA, and SBR are very distinct from those of blends compatibilized with blend of compatibilizers. Results show that compatibilized blends with the blend of compatibilizers EVA/PP-g-MAH, SBR/PP-g-MAH, and SEBS/PP-g-MAH or SBR were relatively more stable than the uncompatibilized blend and blend compatibilized with SEBS or EVA. The compatibilizer does not only reduce the interfacial tension or increase the phase interfacial adhesion between the immiscible polymers, but greatly affects the degree of crystallinity of blends.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号