首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regenerated silk fibroin (RSF)/graphene oxide (GO) nanocomposite has been substantially investigated due to its significant multifunctional potential. Here, in combination of micromorphology, crystalline conformation, dynamic mechanical property characterization, and Fourier self‐deconvolution (FSD) quantitative analysis, we investigated the RSF molecular chains conformation transition induced by GO nanosheet incorporation, and its influence on the structural and mechanical properties of solution casted RSF/GO composite films. The GO nanosheet promoted the silk fibroin molecular chains conformation transition from random coil to β‐sheet structure, and a correlation between β‐sheet structure fraction and GO concentration was revealed. The β‐sheet structure fraction increases further improved the dynamic mechanical property of composite films. Moreover, based on nucleation‐dependent aggregation of silk fibroin molecular chains, a mechanism considering the competition effect between GO concentration and its total surface area was proposed to explain the observed concentration‐dependent conformation transition phenomenon. The study improves our understanding on silk fibroin conformation transition process in RSF/GO composite and would provide a valuable reference for the rational design of bioinspired multifunctional materials with enhanced mechanical properties. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1506–1515  相似文献   

2.
In this present study, biodegradable PBAT nanocomposites containing different weight percentages (1, 3, 5, 7, and 10% w/w) of TiO2 nanoparticles were prepared by using solvent casting technique, chloroform as a solvent. The microstructure and morphology of the as‐synthesized poly(butylene adipate‐co‐terephthalate) (PBAT)/TiO2 nanocomposite films were characterized by Fourier‐transform infrared, X‐ray diffraction, scanning electron microscopy, and transmission electron microscope. The thermal degradation of PBAT composites was studied by using thermogravimetric analysis. The mechanical strength of the films was improved by increasing TiO2 concentration. Tensile strength increased from 32.60 to 63.26 MPa, respectively. Barrier properties of the PBAT/TiO2 nanocomposites were investigated by using an oxygen permeability tester. The oxygen permeability (oxygen transmission rate) decreased with increasing the TiO2 nanoparticle concentrations. The PBAT/TiO2 nanocomposite films showed profound antimicrobial activity against both Gram‐positive and Gram‐negative foodborne pathogenic bacteria, namely, Escherichia coli and Staphylococcus aureus, to understand to the zone of inhibition. These results indicated that filler–polymer interaction is important and the role of the TiO2 as a reinforcement in the nanocomposites was evident. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
Two types of three‐arm and four‐arm, star‐shaped poly(D,L ‐lactic acid‐alt‐glycolic acid)‐b‐poly(L ‐lactic acid) (D,L ‐PLGA50‐b‐PLLA) were successfully synthesized via the sequential ring‐opening polymerization of D,L ‐3‐methylglycolide (MG) and L ‐lactide (L ‐LA) with a multifunctional initiator, such as trimethylolpropane and pentaerythritol, and stannous octoate (SnOct2) as a catalyst. Star‐shaped, hydroxy‐terminated poly(D,L ‐lactic acid‐alt‐glycolic acid) (D,L ‐PLGA50) obtained from the polymerization of MG was used as a macroinitiator to initiate the block polymerization of L ‐LA with the SnOct2 catalyst in bulk at 130 °C. For the polymerization of L ‐LA with the three‐arm, star‐shaped D,L ‐PLGA50 macroinitiator (number‐average molecular weight = 6800) and the SnOct2 catalyst, the molecular weight of the resulting D,L ‐PLGA50‐b‐PLLA polymer linearly increased from 12,600 to 27,400 with the increasing molar ratio (1:1 to 3:1) of L ‐LA to MG, and the molecular weight distribution was rather narrow (weight‐average molecular weight/number‐average molecular weight = 1.09–1.15). The 1H NMR spectrum of the D,L ‐PLGA50‐b‐PLLA block copolymer showed that the molecular weight and unit composition of the block copolymer were controlled by the molar ratio of L ‐LA to the macroinitiator. The 13C NMR spectrum of the block copolymer clearly showed its diblock structures, that is, D,L ‐PLGA50 as the first block and poly(L ‐lactic acid) as the second block. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 409–415, 2002  相似文献   

4.
Tannic‐acid‐based low volatile organic compound‐containing waterborne hyperbranched polyurethane was prepared. In order to improve the performance, it was modified in an aqueous medium using a glycerol‐based hyperbranched epoxy and vegetable‐oil‐based poly(amido amine) at different wt%. The combined system was cross‐linked by heating at 100°C for 45 min. Fourier transform infrared spectroscopy and swelling study were used to confirm the curing. A dose‐dependent improvement of properties was witnessed for the thermoset. Thermoset with 30 wt% epoxy showed excellent improvements in mechanical properties like tensile strength (~3.4 fold), scratch hardness (~2 fold), impact resistance (~1.3 fold), and toughness (~1.7 fold). Thermogravimetric analysis revealed enhancement of thermal properties (maximum 70°C increment of degradation temperature and 8°C increment of Tg). The modified system showed better chemical and water resistance compared with the neat polyurethane. Biodegradation study was carried out by broth culture method using Pseudomonas aeruginosa as the test organism. An adequate biodegradation was witnessed, as evidenced by weight loss profile, bacterial growth curve, and scanning electron microscope images. The work showed the way to develop environmentally benign waterborne polyurethane as a high‐performance material by incorporating a reactive modifier into the polymer network. Use of benign solvent and bio‐based materials as well as profound biodegradability justified eco‐friendliness and sustainability of the modified system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Functional fillers in multilayered films provide opportunity in tailoring the mechanical properties through chemical cross‐linking. In this study, Laponite‐graphene oxide co‐dispersion was used to incorporate graphene oxide (GO) easily into polyvinyl alcohol (PVA)/Laponite layer‐by‐layer (LBL) films. The LBL films were found to be uniform and the layer thickness increased linearly with number of depositions. The process was extended to a large number of depositions to investigate the macroscopic mechanical properties of the free‐standing films. The LBL films showed remarkable improvements in mechanical properties as compared to neat PVA film. The GO‐incorporated LBL films displayed higher enhancements in the tensile strength, ductility, and toughness as compared to that of PVA/Laponite LBL films, upon chemical cross‐linking. This suggests the advantageous effects of GO incorporation. Interestingly, cross‐linking of LBL films for longer time period (>1 h) and higher temperature (~80 °C) was not found to be much beneficial. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2377–2387  相似文献   

6.
The radical polymerization of 1‐vinylpyrrolidin‐2‐one (NVP) in poly(lactic‐co‐glycolic acid) (PLGA) 50:50 at 100 °C leads to amphiphilic PLGA‐g‐PVP copolymers. Their composition is determined by FT‐IR spectroscopy. Thermogravimetric analyses agree with FT‐IR determinations. Saponification of the PLGA‐g‐PVP polyester portion allows isolating the PVP side chains and measuring their molecular weight, from which the average chain transfer constant (CT) of the PLGA units is estimated. The MALDI‐TOF spectra of PVP reveal the presence at one chain end of residues of either glycolic acid‐ or lactic acid‐ or lactic/glycolic acid dimers, trimers and one tetramer, the other terminal being hydrogen. This unequivocally demonstrates that grafting occurred. Accordingly, the orthogonal solvent pair ethyl acetate—methanol, while separating the components of PLGA/PVP intimate mixtures, fails to separate pure PVP or PLGA from the reaction products. All PLGA‐g‐PVP and PLGA/PLGA‐g‐PVP blends, but not PLGA/PVP blends, give long‐time stable dispersions in water. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1919–1928  相似文献   

7.
The aim of this study was to investigate physical and mechanical properties of graphene oxide (GO)/polyethersulfone (PES) nanocomposite films. The films were produced by solution casting method. The mechanical properties of composite films were evaluated by tensile test. A significant enhancement in the mechanical properties of neat PES films was obtained incorporating a small amount of GO loading (0.05–1 wt.%). The highest tensile strength was observed at 1 wt.% of GO. Comparisons were made between experimental data and the Halpin–Tsai model predictions for the tensile strength and modulus of GO/PES composites. The effect of an orientation factor on model predictions was also acquired. The hydrophilicity of the nanocomposite was evaluated by assessing contact angle and enhanced wet ability of the films was obtained with increasing the amount of GO up to 1%. The morphology of the nanocomposites was investigated using scanning electron microscopy and transmission electron microscopy and the results revealed a good dispersion of GO in the PES matrix. The thermal behavior of the composite was also studied. Thermal stability of composites was increased by adding the GO. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Conductive polymer composites (CPC) containing nickel‐coated carbon fiber (NiCF) as filler were prepared using ultra‐high molecular weight polyethylene (UHMWPE) or its mixture with ethylene‐methyl methacrylate (EMMA) as matrix by gelation/crystallization from dilute solution. The electrical conductivity, its temperature dependence, and self‐heating properties of the CPC films were investigated as a function of NiCF content and composition of matrix in details. This article reported the first successful result for getting a good positive temperature coefficient (PTC) effect with 9–10 orders of magnitude of PTC intensity for UHMWPE filled with NiCF fillers where the pure UHMWPE was used as matrix. At the same time, it was found that the drastic increase of resistivity occurred in temperature range of 120–200 °C, especially in the range of 180–200 °C, for the specimens with matrix ratio of UHMWPE and EMMA (UHMWPE/EMMA) of 1/0 and 1/1 (NiCF = 10 vol %). The SEM observation revealed to the difference between the surfaces of NiCF heated at 180 and 200 °C. Researches on the self‐heating properties of the composites indicated a very high heat transfer for this kind of CPCs. For the 1/1 composite film with 10 vol % NiCF, surface temperature (Ts) reached 125 °C within 40 s under direct electric field where the supplied voltage was only 2 V corresponding to the supplied power as 0.9 W. When the supplied voltage was enough high to make Ts beyond the melting point of UHMWPE component, the Ts and its stability of CPC films were greatly influenced by the PTC effect. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1253–1266, 2009  相似文献   

9.
Herein we report an easy and efficient approach to prepare lightweight porous polyimide (PI)/reduced graphene oxide (RGO) composite films. First, porous poly (amic acid) (PAA)/graphene oxide (GO) composite films were prepared via non‐solvent induced phase separation (NIPS) process. Afterwards PAA was converted into PI through thermal imidization and simultaneously GO dispersed in PAA matrix was in situ thermally reduced to RGO. The GO undergoing the same thermal treatment process as thermal imidization was characterized with thermogravimetric analysis, Raman spectra, X‐ray photoelectron spectroscopy and X‐ray diffraction to demonstrate that GO was in situ reduced during thermal imidization process. The resultant porous PI/RGO composite film (500‐µm thickness), which was prepared from pristine PAA/GO composite with 8 wt% GO, exhibited effective electrical conductivity of 0.015 S m?1 and excellent specific shielding efficiency value of 693 dB cm2 g?1. In addition, the thermal stability of the porous PI/RGO composite films was also dramatically enhanced. Compared with that of porous PI film, the 5% weight loss temperature of the composite film mentioned above was improved from 525°C to 538°C. Moreover, tensile test showed that the composite film mentioned above possessed a tensile strength of 6.97 MPa and Young's modulus of 545 MPa, respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Using a mutual solvent technique, blend films of poly[(alaine ethyl ester)0.62(glycine ethyl ester)0.38]phosphazene/poly(lactide‐co‐glycolide) (PAGP/PLGA blend) were prepared at different conditions including weight ratios, solvents, environmental humidity, film thickness, and substrates. The morphology and properties of blend films were characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDX), X‐ray photoelectron spectrometry (XPS), and solvent selective etching. Compared with dichloromethane and tetrahydrofuran (THF), chloroform was the better solvent to form miscible PAGP/PLGA blend films at relatively anhydrous atmosphere. However, in the humid atmosphere, the hexagonal arrangement of holes appeared on the surface of PAGP/PLGA blend films due to the ordered array of water droplets. A sandwich‐liked structure was formed with the hydrophilic PAGP component at the top and bottom, while the PLGA component in the middle. In addition, the surface morphology of PAGP/PLGA blend films was also influenced by the film thickness and the property of the substrate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
In this study, three kinds of L ‐lactide‐based copolymers, poly(lactide‐co‐glycolide) (PLGA), poly(lactide‐co‐p‐dioxanone) (PLDON) and poly(lactide‐co‐caprolactone) (PLC), were synthesized by the copolymerization of L ‐lactide (L) with glycolide (G), or p‐dioxanone (DON) or ε‐caprolactone (CL), respectively. The copolymers were easily soluble in common organic solvents. The compositions of the copolymers were determined by 1H‐NMR. Thermal/mechanical and shape‐memory properties of the copolymers with different comonomers were compared. Moreover, the effect of the chain flexibility of the comonomers on thermal/mechanical and shape‐memory properties of the copolymers were investigated. The copolymers with appropriate lactyl content showed good shape‐memory properties where both the shape fixity rate (Rf)and the shape recovery rate (Rr) could exceed 95%. It was found that the comonomers with different flexible molecular chain have different effects on their thermal/mechanical and shape‐memory properties. Among them, PLGA has the highest mechanical strength and recovery rate while PLC copolymer has high recovery rate when the lactyl content exceeded 85% and the lowest transition temperature (Ttrans). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Shape memory composites of trans‐1,4‐polyisoprene (TPI) and low‐density polyethylene (LDPE) with easily achievable transition temperatures were prepared by a simple physical blending method. Carbon nanotubes (CNTs) were introduced to improve the mechanical properties of the TPI/LDPE composites. The mechanical, cure, thermal, and shape memory properties of the TPI/LDPE/CNTs composites were investigated in this study. In these composites, the cross‐linked network generated in both the TPI and LDPE portions acted as a fixed domain, while the crystalline regions of the TPI and LDPE portions acted as a domain of reversible shape memory behavior. We found that CNTs acted as not only reinforced fillers but also nucleation agents, which improved the crystalline degree of the TPI and LDPE portions of the composites. Compared with the properties at the other CNT doses, the mechanical properties of the TPI/LDPE composites when the CNT dose was 1 phr were improved significantly, showing excellent shape memory properties (Rf = 97.85%, Rr = 95.70%).  相似文献   

13.
D ,L ‐3‐Methylglycolide (MG) was synthesized via two step reactions with a good yield (42%). It was successfully polymerized in bulk with stannous octoate as a catalyst at 110 °C. The effects of the polymerization time and catalyst concentration on the molecular weight and monomer conversion were studied. Poly(D ,L ‐lactic acid‐co‐glycolic acid) (D ,L ‐PLGA50; 50/50 mol/mol) copolymers were successfully synthesized from the homopolymerization of MG with high polymerization rates and high monomer conversions under moderate polymerization conditions. 1H NMR spectroscopy indicated that the bulk ring‐opening polymerization of MG conformed to the coordination–insertion mechanism. 13C NMR spectra of D ,L ‐PLGA50 copolymers obtained under different experimental conditions revealed that the copolymers had alternating structures of lactyl and glycolyl. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4179–4184, 2000  相似文献   

14.
Zirconia/polydopamine (ZrO2/PDA) nanocomposite multilayer films were constructed on Si substrate via a novel nonelectrostatic layer‐by‐layer (NELBL) assembly technique. The building block of this technique is the newly reported dopamine molecule, which can be attached to almost all material surfaces and undergo oxidation‐polymerization to form PDA layers; more importantly, the outer hydroxyl groups of the PDA layer can chelated with certain inorganic oxide nanoparticles to generate oxide films. Thus, ZrO2/PDA nanocomposite multilayer films were fabricated by sequential NELBL deposition of PDA and ZrO2 nanoparticles. The formation of the ZrO2/PDA nanocomposite multilayer films was monitored by the water contact angle (WCA) and ellipsometric thickness measurements, while the microstructure of the fabricated films was analyzed by means of atomic force microscope (AFM), field emission scanning electron microscope (FESEM), X‐ray photoelectron spectrum (XPS), and X‐ray diffraction (XRD) analysis. The mechanical and anticorrosion behaviors of the annealed ZrO2/PDA nanocomposite multilayers were found to be greatly enhanced as compared with that of the annealed homogeneous ZrO2 film. The better mechanical and anticorrosion behaviors of the annealed ZrO2/PDA nanocomposite multilayers than the annealed homogeneous ZrO2 film may be closely related to their special microstructure. Namely, the organic–inorganic hybrid microstructure of the annealed ZrO2/PDA nanocomposite multilayers may largely account for the increased nanohardness and corrosion resistance. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
A series of multihydroxyl (2, 4, and 8) terminated poly(ethylene glycol)s and their biodegradable, biocompatible, and branched barbell‐like (PLGA)nb‐PEG‐b‐(PLGA)n (n = 1, 2, 4) copolymers have been synthesized. The lengths of the PLGA arms were varied by controlling the molar ratio of monomers to hydroxyl groups of PEG ([LA+GA]0/[? OH]0 = 23, 45, 90). Chemical structures of synthesized barbell‐like copolymers were confirmed by both 1H and 13C‐NMR spectroscopies. Molecular weights were determined by 1H‐NMR end‐group analysis and gel permeation chromatography. The result of hydrolytic degradation indicated that the rate of degradation increased with the increase of arm numbers or with the decrease of arm lengths. The thermal properties were evaluated by using differential scanning calorimetry and a thermogravimetric analysis. The results indicated that the thermal properties of barbell‐like copolymers depended on the structural variations. The morphology of (PLGA)n‐PEG‐(PLGA)n copolymers self‐assembly films were investigated by atomic force microscope, the results indicated that the microphase separation existed in (PLGA)n‐PEG‐(PLGA)n copolymers. Because of the favorable biodegradability and biocompatibility of the PLGA and PEG, these results may therefore create new possibilities for these novel structural amphiphilic barbell‐like copolymers as potential biomaterials. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3802–3812, 2008  相似文献   

16.
A series of fluorene‐based benzoxazine copolymers were synthesized from the mixture of 9,9‐bis(4‐hydroxyphenyl)fluorene and bisphenol A, and 4,4′‐diaminodiphenyloxide and paraformaldehyde. And the cured polybenzoxazine films derived from these copolymers were also obtained. Fourier transform infrared spectroscopy (FTIR) and hydrogen nuclear magnetic resonances confirmed the structure of these benzoxazines. Their molecular weight was estimated by gel permeation chromatography. The curing behavior of the precursors was monitored by FTIR and differential scanning calorimetry. Dynamic mechanical analysis and thermogravimetric analysis were performed to study the thermal properties of the cured polymers. The cured polybenzoxazines exhibit excellent heat resistance with glass transition temperatures (Tg) of 286–317°C, good thermal stability along with the values of 5% weight loss temperatures (T5) over 340°C, and high char yield over 50% at 800°C. The mechanical properties of the cured polymers were also measured by bending tests. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Photocatalytic multilayer nanocomposite films composed of anatase TiO2 nanoparticles and lignosulfonates (LS) were fabricated on quartz slides by the layer‐by‐layer (LBL) self‐assembly technique. X‐ray photoelectron spectroscopy (XPS), UV‐vis spectroscopy and atomic force microscopy (AFM) were used to characterize the TiO2/LS multilayer nanocomposite films. Moreover, the photocatalytic properties (decomposition of methyl orange and bacteria) of multilayer nanocomposite films were investigated. XPS results indicated that the intensities of titanium and sulfur peaks increased with the LBL deposition process. A linear increase in absorbance at 280 nm was found by UV‐Vis spectroscopy, suggesting that stepwise multilayer growth occurs on the substrate and this deposition process is highly reproducible. AFM images showed that quartz slide was completely covered by TiO2 nanoparticles when a 10‐bilayer multilayer film was formed. The decomposition efficiency of methyl orange by TiO2/LS multilayer films under the same UV irradiation time increased linearly with the number of TiO2 layers, and the results of decomposition of bacteria under UV irradiation showed that TiO2/LS multilayer nanocomposite films exhibited excellent decomposition activity of bacteria (Escherichia coil).  相似文献   

18.
《先进技术聚合物》2018,29(4):1344-1356
Three nanocomposite films based on aramid (poly (ether‐amide), PEA) and multiwall carbon nanotubes (MWCNT) were prepared via solution casting method using 2,7‐bis(4‐aminophenoxy)naphthalene (4) and isophthalic acid (5) containing various amounts of MWCNT (2, 3, 5 wt.%). To comprehensively analyze the properties of the cast films as well as the monomers, different techniques were employed, namely FT‐IR, 1H NMR, X‐ray diffraction, and field emission scanning electron microscopy. Also, thermal and tensile properties of PEA (6) and nanocomposite films were investigated using thermogravimetric analysis and mechanical analysis, respectively. The morphology, thermal, and mechanical properties of nanocomposite films approved that MWCNT had well dispersion in the PEA matrix and showed a synergistic effect on improving all of the investigated properties. Based on the thermogravimetric analysis results, employing MWCNT caused to increase in the char yields from 61 (in the neat PEA) to 66 (in the PEA /MWCNT nanocomposite 5 wt.%) under the nitrogen atmosphere. In comparison to the pristine PEA (426°C), the temperature at 10 losses mass % (T10) was increased from 530°C to 576°C, with 2 to 5 wt.% of MWCNT. Mechanical analysis revealed that the tensile strength and initial modulus were improved by incorporating MWCNT into PEA (81.70–93.40 MPa and 2.10–2.22 GPa, respectively). Electrical conductivity of the PEA/MWCNT nanocomposites was displayed maximum value in the 5 wt.%, showing satisfactory value in many application areas. The X‐ray diffraction technique was employed to study the crystalline structure of the prepared nanocomposite films as well as PEA. In addition, the electrochemical impedance spectroscopy study demonstrated that the prepared nanocomposites had significant impedance improvement in the presence of MWCNTs.  相似文献   

19.
《先进技术聚合物》2018,29(1):61-68
Bio‐based nanocomposites of poly (butylene adipate‐co‐terephthalate) (PBAT)/silver oxide (Ag2O) were prepared by the composite film casting method using chloroform as the solvent. The prepared Ag2O at different ratios (1, 3, 5, 7, and 10 wt%) is incorporated in the PBAT. The PBAT nanocomposite films were subjected to structural, thermal, mechanical, barrier, and antimicrobial properties. The electron micrographs indicated uniform distribution of Ag2O in the PBAT matrix. However, the images indicated agglomeration of Ag2O particles at 10 wt% loading. The thermal stability of the nanocomposite films increased with Ag2O content. The tensile strength and elongation of the composite films were found to be higher than those of PBAT and increased with Ag2O content up to 7 wt%. The PBAT‐based nanocomposite films showed the lower oxygen and water vapor permeability when compared to the PBAT film. Antimicrobial studies were performed against two food pathogenic bacteria, namely, Klebsiella pneumonia and Staphylococcus aureus.  相似文献   

20.
《先进技术聚合物》2018,29(4):1322-1333
This work aims to develop novel composites from a poly(L ‐lactide‐co‐trimethylene carbonate‐co‐glycolide) (PLTG) terpolymer and mesoporous silica (SBA‐15) nanofillers surface modified by post‐synthetic functionalization. SBA‐15 first reacts with a silane coupling agent, γ‐aminopropyl‐trimethoxysilane to introduce ammonium group. PLLA chains were then grafted on the surface of SBA‐15 through ammonium initiated ring‐opening polymerization of L ‐lactide. Composites were prepared via solution mixing of PLTG terpolymer and surface modified SBA‐15. The structures and properties of pure SBA‐15, γ‐aminopropyl‐trimethoxysilane modified SBA‐15 (H2N‐SBA‐15), PLLA modified SBA‐15 (PLLA‐NH‐SBA‐15), and PLTG/PLLA‐NH‐SBA‐15 composites were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, transmission electron microscopy, N2 adsorption‐desorption, differential scanning calorimetry, contact angle measurement, and mechanical testing. The results demonstrated that PLLA chains were successfully grafted onto the surface of SBA‐15 with grafting amounts up to 16 wt.%. The PLTG/PLLA‐NH‐SBA‐15 composites exhibit good mechanical properties. The tensile strength, Young's modulus, and elongation at break of the composite containing 5 wt.% of PLLA‐NH‐SBA‐15 were 39.9 MPa, 1.3 GPa, and 273.6%, respectively, which were all higher than those of neat PLTG or of the composite containing 5 wt.% of pure SBA‐15. Cytocompatibility tests showed that the composites present very low cytotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号