首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《先进技术聚合物》2018,29(1):641-648
To explore the component synergistic effect of boron/phosphorus compounds in epoxy resin (EP), 3 typical boron compounds, zinc borate (ZB), boron phosphate (BPO4), and boron oxide (B2O3), blended with phosphaphenanthrene compound TAD were incorporated into EP, respectively. All 3 boron/phosphorus compound systems inhibited heat release and increased residue yields and exerted smoke suppression effect. Among 3 boron/phosphorus compound systems, B2O3/TAD system brought best flame‐retardant effect to epoxy thermosets in improving the UL94 classification of EP composites and also reducing heat release most efficiently during combustion. B2O3 can interact with epoxy matrix and enhance the charring quantity and quality, resulting in obvious condensed‐phase flame‐retardant effect. The combination of condensed‐phase flame‐retardant effect from B2O3 and the gaseous‐phase flame‐retardant effect from TAD effectively optimized the action distribution between gaseous and condensed phases. Therefore, B2O3/TAD system generated component synergistic flame‐retardant effect in epoxy thermosets.  相似文献   

2.
Boron nitride (BN) micro particles modified by silane coupling agent, γ‐aminopropyl triethoxy silane (KH550), are employed to prepare BN/epoxy resin (EP) thermal conductivity composites. The thermal conductivity coefficient of the composites with 60% mass fraction of modified BN is 1.052 W/mK, five times higher than that of native EP (0.202 W/mK). The mechanical properties of the composites are optimal with 10 wt% BN. The thermal decomposition temperature, dielectric constant, and dielectric loss increase with the addition of BN. For a given BN loading, the surface modification of BN by KH550 exhibits a positive effect on the thermal conductivity and mechanical properties of the BN/EP composites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Intumescent flame retardant (IFR) has received the considerable attention ascribed to the inherent advantages including non‐halogen, low toxicity, low smoke release and environmentally friendly. In this work, a novel charring agent poly (piperazine phenylaminophosphamide) named as PPTA was successfully synthesized and characterized by Fourier transform infrared spectra (FTIR) and X‐ray photoelectron spectroscopy (XPS). Then, a series of flame‐retardant EP samples were prepared by blending with ammonium polyphosphate (APP) and PPTA. Combustion tests include oxygen Index (LOI), vertical Burning Test (UL‐94) and cone calorimeter testing,these test results showed that PPTA greatly enhances the flame retardancy of EP/APP. According to detailed results, EP containing 10 wt% APP had a LOI value of 30.2%,but had no enhancement on UL‐94 rating. However, after both 7.5 wt% APP and 2.5 wt% PPTA were added, EP‐7 passed UL‐94 V‐0 rating with a LOI value of 33.0%. Moreover, the peak heat release rate (PHRR) and peak of smoke product rate (PSPR) of EP‐7 were greatly decreased. Meanwhile, the flame‐retardant mechanism of EP‐7 was investigated by scanning electron microscopy (SEM), thermogravimetric analysis/infrared spectrometry (TG‐IR) and X‐ray photoelectron spectroscopy (XPS). The corresponding results presented PPTA significantly increased the density of char layer, resulting in the good flame retardancy.  相似文献   

4.
采用极限氧指数仪和锥形量热仪测试了以六苯氧基环三磷腈(HPCP)阻燃环氧树脂的燃烧性能,结果显示,与纯环氧树脂相比,阻燃环氧树脂的极限氧指数值(LOI)明显提高、热释放速率峰值(pk-HRR)和总热释放量(THR)明显下降、环氧树脂的点燃时间提前以及分解速度加快.采用热失重(TGA)、热重红外联用(TGA-FTIR)、X射线光电子能谱(XPS)和热裂解气相色谱质谱联用(Py-GC/MS)研究了HPCP及其阻燃环氧树脂的热解路线和阻燃机理.结果表明,在阻燃环氧树脂过程中,一方面,HPCP分子中的苯氧基团首先解离并发生歧化反应,由此产生的苯氧基及其歧化产物的焠灭效应在环氧树脂中发挥气相阻燃作用,剩余的磷腈环和苯环基团会进一步裂解产生小分子碎片;另一方面,环氧树脂基体在HPCP的作用下提前分解,产生了基于双酚A结构的大分子碎片并在HPCP裂解产物作用下加速炭化,从而使更多的基体组分以残炭的形式被固定在凝聚相中,提高了阻燃环氧树脂的残炭产率,发挥了凝聚相阻燃作用.  相似文献   

5.
《先进技术聚合物》2018,29(4):1294-1302
For the sake of improving the flame retardancy of epoxy resin (EP), a novel phosphorus‐containing phenolic resin (PPR) synthesized in our group instead of conventional phenolic resin (PR) was used to cure EP in the present research. The curing processes and the corresponding crosslinking structure and mechanical performance were investigated by differential scanning calorimeter and dynamic mechanical thermal analysis. Because of the introduction of flame‐retarding elements including P and Si, PPR exhibited higher charring capacity in the condensed phase, which is helpful to construct a char layer of higher quality. Correspondingly, PPR‐cured EP displayed remarkably improved flame retardance as compared to conventional PR‐cured EP through the related evaluations including limiting oxygen index, vertical burning test, and microscale combustion colorimeter. As a multifunction agent, it is believable that PPR possesses potential commercial value to prepare flame‐retardant EP with high performance.  相似文献   

6.
《先进技术聚合物》2018,29(2):758-766
In this study, epoxy coatings were modified by adding various compositions of B4C particles. In order to achieve proper dispersion of particles in the epoxy coating and increasing chemical interactions between particles and polymeric coating, the surface of the B4C particles was treated with γ‐(2,3‐epoxypropoxy) propytrimethoxysilane (KH560). The surface modification and microstructure of B4C were characterized by Fourier transform infrared, X‐ray diffraction, X‐ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. Electrochemical impedance spectroscopy was also used to evaluate the impedance of coatings. The results revealed that the KH560 not only enhanced the interaction between B4C particles and epoxy resin but also exhibited a remarkable ability to improve the anticorrosion performance of epoxy resin. The epoxy coating with the 3 wt% B4C‐KH560 particles exhibited the best anticorrosion performance, which can be attributed to the best uniform dispersion of the B4C‐KH560 particles, and the particles effectively block the aggressive species (Cl, O2, and H2O) from the coating.  相似文献   

7.
Microencapsulation of Bistetrazol · diammonium (BHT · 2NH3) as a hydrophilic powdery flame retardant was tried by the interfacial reaction method in reverse emulsion. In this microencapsulation method, water droplets containing BHT · 2NH3 and hydrazine as gelation agent for epoxy resin were dispersed in the continuous phase of corn oil. When epoxy resin was added to the continuous phase, BHT · 2NH3 as a core material was microencapsulated by the reaction of epoxy resin with hydrazine on the interface between the surface of water droplet and the continuous phase. The content of the core material from 70 to 85%, and the microencapsulation efficiency from 89 to ca 100% were able to be attained under the experimental conditions adopted here. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
New flame‐retardant epoxy resin compounds containing novolac derivatives with specific aromatic compounds have been developed. After crosslinking reactions between epoxy resin and hardener, the epoxy resin compounds formed highly flame‐retardant network structures that were obtained by including biphenylene and phenylene moieties in the main chains of novolac‐type epoxy resin and phenol novolac resin hardener. The high flame retardancy is due mainly to the stable foam layers that form during combustion because of the low elasticity at high temperatures and the high pyrolysis resistance of the compounds. Furthermore, the addition of excess phenol derivative hardener not only facilitates the formation of the foam layers by decreasing the crosslink densities but also reduces the amount of flammable substances generated from the epoxy resin compounds during combustion. The use of a multifunctional epoxy resin containing four glycidyloxy groups in the compounds improved characteristics such as heat resistance and strength at high temperatures, while maintaining excellent flame retardancy. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
《先进技术聚合物》2018,29(7):2147-2160
Layered double hydroxides (LDHs) are emerging as a new and green high‐efficient flame retardant. But LDHs aggregate seriously because of their hydrophilicity, which affect deeply the mechanical and flame retardant properties of their composites. For the first time in this paper, microencapsulated LDHs (MCLDHs) with melamine‐formaldehyde (MF) resin were prepared by microencapsulation technology to enhance their compatibility and dispersion within epoxy resin (EP). The mechanical and flame retardant performances of EP/MCLDH composite were studied by comparing with EP/LDH composite. Results showed that the water contact angle of MCLDHs increased from 8.9° to 122.1°, which indicated good compatibility. The particle size of MCLDHs decreased sharply, and more than one‐third were up to submicron scale, which can be conducive to dispersion. Moreover, the tensile strength and elongation at break of EP/MCLDHs with different flame retardant contents were higher than those of EP/LDHs. And the addition of MCLDHs increased the glass transition temperature (Tg) of EP/MCLDHs, which meant a strong interfacial interaction. Besides, compared with EP/LDHs, the limiting oxygen index values of EP/MCLDHs were higher, and its peak of heat release rate and total heat release decreased by 16.3% and 5.5% respectively. EP/MCLDHs achieved from V‐1 to V‐0 rate with the increasing content of MCLDHs from 20% to 30%, while LDHs/EP never passed tests. In the process of heating, H2O, CO2, and NH3 released from MCLDHs formed gaseous phase, and the remaining dense char layers and oxides produced condensed phase, which played an important role in inhibiting combustion.  相似文献   

10.
In order to give epoxy resin good flame retardance, a novel bio-based flame retardant based on 2-aminopyrimidine (referred to as VAD) was synthesized from renewable vanillin as one of the starting materials. Its structure was confirmed by NMR and mass spectra. The epoxy resins containing VAD were prepared by utilizing 4,4-diaminodiphenylmethane (DDM) as a co-curing agent, and their flame-retardant, mechanical and thermal properties and corresponding mechanisms were studied. VAD accelerated the cross-linking reaction of DDM and E51 (diglycidyl ether of bisphenol A). 12.5 wt% VAD made the epoxy resin achieve UL-94 V-0 rating and its limited oxygen index (LOI) value increase from 22.4% to 32.3%. The cone calorimetric testing results revealed the decline in the values of total heat release (THR) and peak of heat release rate (pk-HRR) and the obvious enhancement of residue yield. A certain amount of VAD enhanced the flame inhibition, charring and barrier effects, resulting in good flame retardance of the epoxy resin. Furthermore, the tensile strength, flexural strength and flexural modulus of the epoxy resin with 12.5 wt% loading of VAD were 6.5%, 14.9%, 15.2% higher than those of EP, indicating the strengthening effect of VAD. This work guarantees VAD to be a promising flame retardant for enhancing the fire retardancy of epoxy resin without compromising its mechanical properties.  相似文献   

11.
Metallocene catalyst based polyethylene‐co‐7‐octenyldimethyl phenyl silane (PE/Si? Ph ) and its post‐treated functional forms PE/Si? X ( X = Cl , F , OCH3 , OCH2CH3 ) were used as additives in PE/ATH composites. The impact strength of the composites was significantly increased after a small addition (0.5–3.0 wt %) of the functionalized form of the copolymer (PE/Si? X ). The thermal study of the composites gave us more information about the additive's behavior at the filler/matrix interphase and correlation to the mechanical properties was found. According to this thermal data, the original untreated form of PE/Si? Ph also seemed to interact weakly with the ATH‐filler particles, which was seen in an altered interphase at the filler/matrix boundary layer. The interaction was not strong enough to improve the impact strength of composites but an increase was observed in some other mechanical properties (tensile stress, yield strain). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5597–5608, 2005  相似文献   

12.
A novel mono‐component intumescent flame retardant named pentaerythritol phosphate melamine salt (PPMS)‐hybrid bismuth oxide (PPMS‐Bi2O3) was synthesized and carefully characterized by FTIR, 1H NMR, 31P NMR, SEM‐EDS, and TG analyses. Then, PPMS‐Bi2O3 was utilized as flame retardant for epoxy resins (EPs), and the thermal stability, flame retardancy, and smoke suppression properties of EP composites were investigated. TG results show that PPMS‐Bi2O3 is more conducive to enhance the thermal stability and char forming ability of EP composites compared with the same addition of PPMS or the mixture of PPMS and Bi2O3, and this positive effect is enhanced with the increasing Bi2O3 content. Cone calorimeter test reveals that the PPMS‐Bi2O3 can effectively reduce the heat release and smoke production in comparison with PPMS or the mixture of PPMS and Bi2O3 due to the formation of a more compact and intumescent char against fire, as judged by digital photographs and SEM images. EDS analysis indicates that the combination PPMS and Bi2O3 by hydrogen bonds promotes to generate more phosphorus‐rich and aromatization structures in the condensed phase that enhance the barrier effect and anti‐oxidation ability of the char, thus imparting higher flame retardant and smoke suppression efficiencies to EP composites.  相似文献   

13.
A phosphorus-nitrogen reactive flame retardant curing agent poly-(isophorondiamine spirocyclic pentaerythritol bisphosphonate) (PIPSPB) was synthesized. The chemical structure of the obtained compound was identified by FTIR, 1HNMR, and mass spectroscopies. Different proportions of DDS and PIPSPB were compounded as the curing agents to prepare a series of flame retardant epoxy resins with different phosphorus contents. The curing behavior of E-44/PIPSPB?+?DDS system was studied by DSC. A series of tests were conducted to characterize E-44/PIPSPB?+?DDS thermosetting system’s performance. The result demonstrates that the residual carbon content of EP/PIPSPB?+?DDS system is obviously higher than that of EP/DDS system after 500?°C with the increase of phosphorus content in the system, and the heat release rate of the system during combustion is significantly reduced. The generated phosphorus-containing carbon layer is obviously foamed, which shows that the flame retardancy of the system is the result of the combined action of condensed phase and gas phase. When the phosphorus content is 1.77wt%, EP-3 successfully passed UL94 V-0 flammability rating, the LOI value was as high as 29%, the impact strength and tensile strength of it were 6.08KJ/m2 and 49.10MPa respectively, the adhesive strength could reach 13.89?MPa, the system presents a good overall performance.  相似文献   

14.
Multifunctional epoxy resins with excellent, thermal, flame‐retardant, and mechanical properties are extremely important for various applications. To solve this challenging problem, a novel highly efficient multielement flame retardant (PMSBA) is synthesized and the flame‐retardant and mechanical properties of modified epoxy resins are greatly enhanced without significantly altering their and thermal properties by applying the as‐synthesized PMSBA. The limiting oxygen index value reaches up to 29.6% and could pass the V‐0 rating in the UL‐94 test with even low P content (0.13%). Furthermore, cone calorimetry results demonstrate that 30.3% reduction in the peak heat release rate for the sample with 10.0 wt% PMSBA is achieved. X‐ray photoelectron spectroscopy and scanning electron microscopy indicate that Si‐C, Si‐N, and phosphoric acid derivative can be transformed into a multihole and intumescent char layer as an effective barrier, preserving the epoxy resin structure from fire. More importantly, mechanical properties such as impact strength, tensile strength, and flexural strength are also increased by 63.86%, 33.54%, and 15.65%, respectively, which show the incorporation of PMSBA do not deteriorate the mechanical properties of modified epoxy resins. All the results show that PMSBA is a promising strategy for epoxy resin with satisfactory, thermal, flame‐retardant, and mechanical properties.  相似文献   

15.
In this report, a novel phosphorus/silicon‐containing reactive flame retardant, hexa(3‐triglycidyloxysilylpropyl)triphosphazene (HGPP), was synthesized and characterized by Fourier transform infrared spectrometry and nuclear magnetic resonance spectra (1H, 31P, and 29Si), respectively. To prepare cured epoxy, HGPP had been co‐cured with diglycidyl ether of bisphenol‐A (DGEBA) via 4,4‐diaminodiphenylsulfone as a curing agent. The mechanical, thermal, and flame retardant properties of the cured epoxy were evaluated by dynamic mechanical analysis, thermogravimetric analysis, and limiting oxygen index (LOI). According to these results, it could be found that incorporation of HGPP in the cured epoxy system showed good thermal stability, high LOI values, and high char yield at high temperature. As moderate loading of HGPP in the epoxy system, its storage modulus and glass transition temperature were higher than those of neat DGEBA. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Hexagonal boron nitride (h‐BN) is modified by a simple and green method based on self‐oxidation of dopamine and epoxy groups functionalized silane (KH560) grafting. The surface modification and microstructure of h‐BN are characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, X‐ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. The poly(dopamine) and epoxy groups not only increase the compatibility of the h‐BN and enhance its interaction with epoxy matrix but also exhibit a remarkable superiority in enhancing the anticorrosion performance of epoxy coatings. In addition, the anticorrosion mechanisms of h‐BN@PDA‐KH560 are tentatively discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Methods are proposed to synthesize efficient organophosphorous compounds and combine them with montmorillonite nanoparticles. The chemical-physical structure and mechanism of action of the new systems were studied in epoxy resin. Best results were achieved using the fully phosphorylated calixresorcinarene derivative: the heat release rate peak could be decreased by 61% and the LOI value was increased from 21 to 28. The salt form of additives in case of phosphorylated phloroglucine derivatives was not advantageous in epoxy resin, because the additives could not participate in the crosslinking process effectively due to their inhomogenous distribution in the matrix. The incorporation of the nanoparticles did not create the desired flame retardant effect which can be explained by the increased heat conductivity and lower mobility of the nanoparticles due to the crosslinked structure.  相似文献   

18.
Flame retardant additives of montmorillonite (MMT) and multi-walled carbon nanotube (MWCNT) were embedded in epoxy resin to improve the resin's flame retardant properties. MMT was fluorinated to exfoliate its layers and enhance its dispersion into the epoxy resin. The MWCNT was also fluorinated to create hydrophobic functional groups for improved dispersion into the epoxy resin. The MWCNT reduced the degradation rate of the epoxy resin and increased the char yield. Limiting oxygen index also increased showing first order against char yield. The exfoliated MMT acted as an energy storage medium to hinder thermal transfer within the epoxy resin. The activation energy increased almost two times by fluorinated MMT/MWCNT additives. The fluorination of the additives, MMT and MWCNT significantly improved the flame retardant properties of the epoxy resin.  相似文献   

19.
A series of CeO2‐loaded titania nanotubes (CeO2‐TNTs) hybrid materials with different CeO2 loadings were synthesized by co‐precipitation method and then incorporated into epoxy resin (EP) to prepare CeO2‐TNTs flame‐retardant epoxy nanocomposites. Structure and morphology characterization indicated the successful synthesis of CeO2‐TNTs. The effect of CeO2‐TNTs with different CeO2 loading capacity on the flame retardance of EP was compared and analyzed by the thermogravimetric analysis, Cone and Raman. The results showed that CeO2 loading could increase the carbon residue of nanocomposites, reduce the peak heat release rate (PHRR) and total heat release (THR), and improve the fire safety of EP. The residual carbon content of EP/0.1CeO2‐TNTs sample at 700°C reached 19.8% with the lowest degradation rate, and the PHRR and THR were reduced to 680 kW/m2 and 32.9 MJ/m2, respectively. Such a significant improvement in flame‐retardant properties for EP could be attributed to the protective effect of CeO2‐TNTs.  相似文献   

20.
The copolymerisation of benzoxazine of bisphenol A and diglycidyl ether of (2,5-dihydroxyphenyl)diphenyl phosphine oxide or diglycidyloxymethylphenylsilane has been studied. In all samples the molar ratio of the benzoxazine-epoxy system was varied to achieve different phosphorus or silicon contents. Their thermal, dynamic-mechanical and flame retardant properties were evaluated. The high limiting oxygen index values confirmed that the phosphorus-containing benzoxazine-epoxy resins are effective flame retardants, but no efficiency of silicon on flame retardation was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号